首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Tumor necrosis factor-alpha (TNF-alpha) is a potent modulator of ovarian function, affecting steroidogenesis of both granulosa and theca-interstitial (T-I) cells. Women with polycystic ovary syndrome (PCOS) have increased levels of serum TNF-alpha. The present study evaluated the effects of TNF-alpha on T-I cell proliferation. Purified rat T-I cells were cultured for 48 h with or without TNF-alpha (0.001-1 nM), insulin-like growth factor I (IGF-I; 10 nM), and/or insulin (10 nM). Proliferation was measured by [(3)H]thymidine incorporation assay and by counting the steroidogenically active (stained positive for 3beta-hydroxysteroid dehydrogenase; 3beta-HSD) and inactive (3beta-HSD negative) cells. TNF-alpha stimulated thymidine incorporation in a dose-dependent fashion (up to 3.2-fold; P < 0.01). Insulin and IGF-I stimulated T-I proliferation (respectively, by up to 2.4- and 3.1-fold; P < 0.001). TNF-alpha potentiated effects of insulin and IGF-I in a dose-dependent and additive fashion (up to 6.7-fold; P < 0.001). TNF-alpha (1 nM) increased total cell count (by 80%, P < 0.05) and the proportion of 3beta-HSD-positive cells (by 19%, P < 0.05). Flow cytometry DNA analysis revealed that TNF-alpha (1 nM) increased the proliferative index by up to 16% (P = 0.05). The present findings demonstrate that TNF-alpha stimulates mitotic activity of T-I cells by increasing the proportion of actively dividing cells and preferentially increasing the number of steroidogenically active cells. The effects of TNF-alpha appear to be independent of those induced by insulin and IGF-I. We postulate that TNF-alpha may play a pathophysiologic role in disorders of the T-I compartment, such as PCOS.  相似文献   

2.
Activin stimulates proliferation of rat ovarian thecal-interstitial cells   总被引:7,自引:0,他引:7  
There is growing evidence that the function of ovarian theca-interstitial (T-I) cells may be modulated by paracrine actions of activin, inhibin, and follistatin. Furthermore, either dysregulation, dysfunction, or both, of these peptides may play a role in conditions associated with T-I hyperplasia, such as polycystic ovary syndrome (PCOS) and hyperthecosis. This study was designed to evaluate the role of activin, inhibin, and follistatin in the modulation of T-I cell proliferation. Interaction of these peptides with insulin-like growth factor-I (IGF-I), a known stimulator of T-I cell proliferation, was also assessed. Purified rat T-I cells were cultured for 48 h in chemically defined media and with or without activin (3-30 ng/ml), inhibin (3-30 ng/ml), follistatin (100 ng/ml), and/or IGF-I (10 nM). T-I cell proliferation was assessed using radiolabeled thymidine incorporation assay. Activin alone stimulated proliferation of T-I cells in a dose-dependent fashion (by up to 320% above control; P < 0.001), whereas inhibin alone or follistatin alone had no significant effect. Inhibin had also no effect on activin-induced proliferation. Follistatin significantly reduced the stimulatory effects of activin and decreased proliferation by up to 46% (P < 0.01) below the level attained in the presence of activin alone. IGF-I (10 nM), at a dose producing a near-maximal effect, increased proliferation by 175% above control (P < 0.001); insulin (10 nM) increased proliferation by 52% above control (P < 0.03). A combination of IGF-I (10 nM) and activin (30 ng/ml) resulted in a 1090% increase of proliferation above control (P < 0.001); this stimulatory effect was significantly greater than that achieved in the presence of either activin alone or IGF-I alone (P < 0.001). Similarly, a combination of insulin (10 nM) and activin (30 ng/ml) increased proliferation by 506% above control levels. Flow cytometry evaluation revealed that activin increased the proportion of actively dividing cells (in S or G2/M phase of the cell cycle) by 42% (P < 0.02), whereas IGF-I had no effect on the proportion of actively dividing cells. The present findings indicate that an activin-follistatin system may be involved in the regulation of the size of ovarian thecal-stromal compartment. In view of the synergy between activin and IGF-I, and the difference in the effects on the cell cycle distribution, stimulation of T-I proliferation by these agents is likely to be mediated via separate transduction pathways. Excess activin or insufficient follistatin may contribute to T-I hyperplasia.  相似文献   

3.
Human diploid fibroblasts (HDF) were used to study aging-related changes in the proliferative response to platelet-derived growth factor (PDGF), epidermal growth factor (EGF), and insulin-like growth factor I (IGF-I, somatomedin-C) in serum-free, chemically defined culture medium. Cell cycle kinetic parameters were determined by using 5-bromodeoxyuridine incorporation and flow cytometric analysis with the DNA stain Hoechst 33258. This allowed analysis of the growth factor response to be focussed exclusively upon of the cycling faction of cells within the culture, even in senescent cell cultures which contained predominantly nondividing cells. PDGF and EGF exert their primary effect upon regulation of the proportion of cycling cells in the culture. The doses of PDGF and EGF that produced a half-maximal cycling fraction, analogous to Km, showed no large or consistent difference between young- and old-passage cells. In contrast, IGF-I primarily affects the rate of transition of cells from G1 into S phase, and the dose of IGF-I which produced a half-maximal rate of G1 exit increased up to 130-fold in older-passage cells. Unexpectedly, supraphysiologic concentrations of IGF-I were found to increase the G1 exit rate of the dividing subpopulation of cells in older-passage cultures to rates higher than those seen in young cultures. In summary, among cells capable of cycling in aging cultures, there were few changes in the regulation of the growth fraction by PDGF and EGF, but there was a greatly increased dependence on IGF-I for regulation of the rate of entry into S phase. The slower growth of the dividing population of cells in aging cultures may be related to a requirement for IGF-I at levels which are greatly above those usually supplied.  相似文献   

4.
Vascular smooth muscle cell (SMC) growth is under the influence of various growth factors. We demonstrate that platelet-derived growth factor (PDGF) stimulates DNA synthesis of cultured bovine aortic SMCs by 2.5- to 3.5-fold. PDGF also exhibits additivity with insulin and insulin-like growth factor I (IGF-I) for DNA synthesis and cellular proliferation. Insulin (2 x 10(-6) M), IGF-I (1 x 10(-8) M), and PDGF (1 x 10(-9) M) cause a 60-80% increase in cell numbers over basal, but PDGF with insulin or IGF causes a 40-150% increase over basal. No additivity between insulin and IGF-I is evident. PDGF also induces commitment to DNA synthesis earlier than insulin or IGF-I. After exposure to PDGF for 4 h, SMCs incorporate 3H-thymidine to 60% of maximum (with PDGF alone) levels (achieved after exposure of 12 h or longer). Insulin and IGF-I exposure for 4 h, on the other hand, achieves 3H-thymidine incorporation that is only a 20-30% of maximum (with insulin or IGF-I alone). Insulin, IGF-I, and PDGF increase mRNA levels of the protooncogene c-myc. This induction begins within 30 min of exposure to these growth factors which causes a 4- to 6-fold increase in c-myc mRNA levels. Additivity is also observed between PDGF with insulin or IGF-I, but not between insulin or IGF-I, in c-myc induction. C-myc mRNA levels remain elevated as long as the hormones are present, although there's a tendency for the mRNA levels to fall off with insulin and IGF-I.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Diaminopimelyl-d-alanyl carboxypeptidase (carboxypeptidase II) is most active at the time of division, whether measured in toluene-treated cells of Escherichia coli K-12 strain D11-1, fractionated by size, or in toluene-treated cells of the temperature-sensitive division mutant, BUG 6 (B. D. Beck and J. T. Park, 1976). The present investigation has now shown that, under conditions that permit division, the increased carboxypeptidase II activity in toluenetreated cells of BUG 6 is probably not due to protein synthesis. Although dividing cells are more permeable than nondividing cells, permeability differences are not sufficient to account for the changes in carboxypeptidase II activity. Thus, in the toluene-treated nondividing cells, carboxypeptidase II is present, but its activity is masked, which suggests the presence of an inhibitor. Another striking difference between nondividing and dividing cells is that carboxypeptidase II is much more readily released from dividing cells by both tris(hydroxymethyl)aminomethane-ethylenediaminetetraacetic acid and toluene treatment. Carboxypeptidase II was partially purified and found to be an 86,000-molecular-weight protein consisting of two 43,000-molecular-weight polypeptides. Tris(hydroxymethyl)aminomethane-ethylenediaminetetraacetic acid treatment of nondividing cells releases less than 10% of the carboxypeptidase II and other periplasmic proteins that are releasable from dividing cells.  相似文献   

6.
Transforming growth factor beta-1 (1GF-β) stimulated porcine satellite cell proliferation in basal serum-free medium by 25%, but inhibited growth in serumcontaining medium by 58%. The effect of TGF-β on cell proliferation in serumfree medium was examined in combination with the following human recombinant growth factors: platelet-derived growth factor-BB (PDGF), basic fibroblast growth factor (FGF), insulin-like growth factor I (IGF-I), and epidermal growth factor (EGF). TGF-β inhibited PDGF-stimulated proliferation, enhanced FGF-stimulated proliferation, and had no effect on proliferation stimulated by IGF-I. The response of satellite cells to EGF and TGF-β in serum-free medium was not different than TGF-β alone. TGF-β depressed proliferation stimulated by the following combinations of two growth factors: PDGF and IGF-I, PDGF and EGF, PDGF and FGF, and IGF-I and EGF. In combination with IGF-I and FGF, TGF-β did not affect proliferation. TGF-β inhibited proliferation stimulated by the combination of PDGF, EGF, and IGF-I, but had no effect on proliferation stimulated by combinations of three growth factors that included FGF. FGF stimulated proliferation in Minimum Essential Medium containing 10% porcine serum (MEM-10% PS) by 13% above control. When the combination of TGF-β and FGF was added to MEM-10% PS, a 78% increase in proliferation was observed. Polyclonal antihuman PDGF-AB (this form neutralizes PDGF-AA, AB, and BB) reduced proliferation in MEM-10% PS by 44%. The combination of TGF-β and anti-PDGF-AB reduced proliferation by 59%, indicating the effects were not additive. These data indicate that: (1) FGF and TGF-β interact to increase proliferation of clonally derived porcine satellite cells, and (2) the inhibitory effect of TGF-β on proliferation of clonally derived porcine satelite cells can be primarily attributed to a reduction in the mitogenic effects of PDGF. © 1993 Wiley-Liss, Inc.  相似文献   

7.
Insulin-like growth factor I (IGF-I) promotes anabolism by stimulating protein synthesis in skeletal muscle. In the present study, we have examined mechanisms by which IGF-I stimulates protein synthesis in skeletal muscle with a perfused rat hindlimb preparation. IGF-I (10 nM) stimulated protein synthesis over 2.7-fold. Total RNA content was unaffected, but translational efficiency was increased by IGF-I. We next examined the effect of IGF-I on eukaryotic initiation factor (eIF) 4E as a mechanism regulating translation initiation. IGF-I did not alter either the amount of eIF4E associated with the eIF4E binding protein 4E-BP1 or the phosphorylation state of 4E-BP1. Likewise, the phosphorylation state of eIF4E was unaltered by IGF-I. In contrast, the amount of eIF4E bound to eIF4G was increased threefold by IGF-I. We conclude that IGF-I regulates protein synthesis in skeletal muscle by enhancing formation of the active eIF4E x eIF4G complex.  相似文献   

8.
9.
S P Wilson 《Life sciences》1991,49(4):269-272
Insulin-like growth factor I (IGF-I) increased both the contents of proenkephalin-derived enkephalin-containing peptides and the activity of dopamine beta-hydroxylase in bovine adrenal chromaffin cells. These increases in dopamine beta-hydroxylase and enkephalin-containing peptides continued for at least 8 days. The half-maximal IGF-I concentration for these effects was approximately 1 nM, with maximal effects observed at 10-30 nM. In contrast, insulin was 1000-fold less potent. Pretreatment of chromaffin cells with IGF-I increased the rate of [35S]proenkephalin synthesis 4-fold compared to untreated cells. Total protein synthesis increased only 1.5-fold under these conditions. These results suggest that IGF-I may be a normal regulator of chromaffin cell function.  相似文献   

10.
The influence of Insulin-like Growth Factor I (IGF-I) on some metabolic functions of Sertoli cells from peripubertal rats was investigated. Sertoli cells were isolated from the testes of 24-day-old animals and cultured at 32 degrees C in Eagle's MEM with or without 1 nM IGF-I. Sertoli cells cultured in the presence of IGF-I showed increased nuclear RNA polymerase activity (+80%) and augmented protein synthesis (+50%).  相似文献   

11.
The effects of platelet-derived growth factor (PDGF) on DNA synthesis and mRNA expression of osteoblast markers in marrow stromal cells derived from adult (6 months) and old (24 months) rats were examined. Treatment of stromal cells from adult rats with dexamethasone induced the appearance of osteoblast-like cells. PDGF partially also inhibited the differentiation of stromal cells induced by dexamethasone. In cultures of serum-starved stromal cells, PDGF stimulated [3H]-thymidine incorporation into DNA in a dose-dependent manner with a maximum stimulation of 15-fold at 500 ng/ml. By comparison, insulin-like growth factor (IGF-I) has a small effect on [3H] -thymidine incorporation. The effect of PDGF and IGF-I on DNA synthesis was additive. Treatment of the confluent stromal cells from adult rats with PDGF increased the mRNA level of osteopontin fourfold without any significant effect on alkaline phosphatase and type I collagen mRNAs. In contrast, dexamethasone stimulated the mRNA expression of alkaline phosphatase, type I collagen, and osteopontin 2.1-, 2.3-, and 14-fold, respectively. Addition of PDGF to dexamethasone-treated cells failed to induce any further increase in osteopontin expression whereas the expression of alkaline phosphatase and type I collagen was partially reduced. The expression of osteocalcin mRNA was negligible in stromal cells but stimulated several fold by dexamethasone and 1,25(OH)2D3. PDGF inhibited drastically the elevation of osteocalcin mRNA. In contrast, IGF-I stimulated type I collagen expression 100% without any appreciable effect on the expression of osteopontin and alkaline phosphatase. The stimulatory effect of PDGF on osteopontin expression was augmented by IGF-I. Furthermore, PDGF attenuated the stimulatory effect of IGF-I on type I collagen expression. The responses of cultured cells from old rats to growth factors were also examined. PDGF or PDGF plus IGF-I increased [3H]-thymidine incorporation in stromal cells from old rats but to a lesser extent. However, PDGF was equally effective in stimulating osteopontin expression in cells from both adult and old rats. We concluded that PDGF is a potent mitogen but that the response of stromal cells from old rats is impaired. In addition, PDGF stimulates osteopontin expression in stromal cells and this effect is not age dependent. © 1995 Wiley-Liss, Inc.  相似文献   

12.
Chronic septic abscess formation causes an inhibition of protein synthesis in gastrocnemius not observed in rats with a sterile abscess. Inhibition is associated with an impaired mRNA translation initiation that can be ameliorated by elevating IGF-I but not insulin. The present study investigated the ability of IGF-I signaling to stimulate protein synthesis in gastrocnemius by accelerating mRNA translation initiation. Experiments were performed in perfused hindlimb preparations from rats 5 days after induction of a septic abscess. Protein synthesis in gastrocnemius from septic rats was accelerated twofold by the addition of IGF-I (10 nM) to perfusate. IGF-I increased the phosphorylation of translation repressor 4E-binding protein-1 (4E-BP1). Hyperphosphorylation of 4E-BP1 in response to IGF-I resulted in its dissociation from the inactive eukaryotic initiation factor (eIF) 4E.4E-BP1 complex. Assembly of the active eIF4F complex (as assessed by the association eIF4G with eIF4E) was increased twofold by IGF-I in the perfusate. In addition, phosphorylation of eIF4G and ribosomal protein S6 kinase-1 (S6K1) was also enhanced by IGF-I. Activation of mammalian target of rapamycin, an upstream kinase implicated in phosphorylating both 4E-BP1 and S6K1, was also observed. Thus the ability of IGF-I to accelerate protein synthesis during sepsis may be related to a stimulation of signaling to multiple steps in translation initiation with an ensuing increased phosphorylation of eIF4G, eIF4E availability, and S6K1 phosphorylation.  相似文献   

13.
Three experiments (EXP) were conducted to determine the role of insulin-like growth factor-I (IGF-I) in the control of growth hormone (GH) and LH secretion. In EXP I, prepuberal gilts, 65 ± 6 kg body weight and 140 days of age received intracerebroventricular (ICV) injections of saline (n = 4), 25 μg (n = 4) or 75 μg (n = 4) IGF-I and jugular blood samples were collected. In EXP II, anterior pituitary cells in culture collected from 150-day-old prepuberal gilts (n = 6) were challenged with 0.1, 10 or 1000 nM [Ala15]-h growth hormone-releasing hormone-(1-29)NH2 (GHRH), or 0.01, 0.1, 1, 10, 30 nM IGF-I individually or in combinations with 1000 nM GHRH. Secreted GH was measured at 4 and 24 h after treatment. In EXP III, anterior pituitary cells in culture collected from 150-day-old barrows (n = 5) were challenged with 10, 100 or 1000 nM gonadotropin-releasing hormone (GnRH) or 0.01, 0.1, 1, 10, 30 nM IGF-I individually or in combinations with 100 nM GnRH. Secreted LH was measured at 4 h after treatment. In EXP I, serum GH and LH concentrations were unaffected by ICV IGF-I treatment. In EXP II, relative to control all doses of GHRH increased (P < 0.01) GH secretion. Only 1, 10, 30 nM IGF-I enhanced (P < 0.02) basal GH secretion at 4 h, whereas by 24 h all doses except for 30 nM IGF-I suppressed (P < 0.02) basal GH secretion compared to control wells. All doses of IGF-I in combination with 1000 nM GHRH increased (P < 0.04) the GH response to GHRH compared to GHRH alone at 4 h, whereas by 24 h all doses of IGF-I suppressed (P < 0.04) the GH response to GHRH. In EXP III, all doses of IGF-I increased (P < 0.01) basal LH levels while the LH response to GnRH was unaffected by IGF-I (P > 0.1). In conclusion, under these experimental conditions the results suggest that the pituitary is the putative site for IGF-I modulation of GH and LH secretion. Further examination of the role of IGF-I on GH and LH secretion is needed to understand the inhibitory and stimulatory action of IGF-I on GH and LH secretion.  相似文献   

14.
Sparse cultures of fetal and postnatal human fibroblasts were equivalent in their responsiveness to the mitogenic action of somatomedin C/insulin-like growth factor I (SM-C/IGF-I). At both developmental stages, the addition of SM-C/IGF-I (100 ng/ml) increased cell number at day 3 1.4-fold in serum-free medium and 2-fold in the presence of 0.25% human hypopituitary serum. Furthermore, dose-response curves indicated that there was no difference in the sensitivity of fetal and postnatal fibroblasts to the growth-promoting effects of SM-C/IGF-I, with a half-maximal response occurring at 6 ng/ml SM-C/IGF-I. This biological action of SM-C/IGF-I correlated with SM-C/IGF-I binding to fetal and postnatal fibroblast monolayers. Epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) also stimulated replication of fetal and postnatal fibroblasts. The mitogenic effects of SM-C/IGF-I, EGF, and PDGF were additive. Dexamethasone, which alone had no effect, was synergistic with SM-C/IGF-I in stimulating replication of postnatal fibroblasts. The combination of SM-C/IGF-I (100 ng/ml), dexamethasone (10(-7) M), EGF (10 ng/ml), and PDGF (5 ng/ml) had the same mitogenic effectiveness as 10% calf serum (CS) in postnatal cells. In marked contrast, there was no mitogenic interaction between SM-C/IGF-I and dexamethasone in fetal fibroblasts. In fetal cells, SM-C/IGF-I + EGF + PDGF +/- dexamethasone could only account for 50% of the activity of 10% CS. Moreover, fetal cells were 50-100% more responsive than postnatal cells to the proliferative effect of serum.  相似文献   

15.
The effects of the transforming growth factor beta (TGF-beta) on the growth and glycosaminoglycan synthesis of rabbit growth plate-chondrocytes in culture were studied. In serum-free medium, TGF-beta caused dose-dependent inhibition of DNA synthesis by chondrocytes, measured as [3H]thymidine incorporation (ED50 = 0.1-0.3 ng/ml). The inhibitory effect was maximal at a dose of 1 ng/ml, and extended for a duration of 16-42 h. In contrast, TGF-beta potentiated the synthesis of DNA stimulated by fetal calf serum (FCS). Addition of TGF-beta (1 ng/ml) to cultures containing 10% FCS increased [3H]thymidine incorporation to 1.6-times that in cultures with 10% FCS alone. Consistent with this finding, TGF-beta potentiated DNA synthesis stimulated by the purified growth factors such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF) and fibroblast growth factor (FGF). The maximal stimulation of DNA synthesis by FGF (0.4 ng/ml) was further potentiated dose dependently by TGF-beta (ED50 = 0.1 ng/ml, maximum at 1 ng/ml). When the cultures were treated with the optimal concentrations of TGF-beta (1 ng/ml) and FGF (0.4 ng/ml), [3H]thymidine incorporation was 3-times higher than that of cultures treated with FGF alone. This TGF-beta-induced potentiation of DNA synthesis was associated with replication of chondrocytes, as shown by a marked increase in the amount of DNA during treatment of sparse cultures of the cells with the growth factors for 5 days. In contrast, TGF-beta caused dose-dependent stimulation of glycosaminoglycan synthesis in confluent cultures of growth-plate chondrocytes (ED50 = 0.3 ng/ml, maximum at 1 ng/ml). This stimulatory effect of TGF-beta was greater than that of insulin-like growth factor I (IGF-I) or PDGF. Furthermore, TGF-beta stimulated glycosaminoglycan synthesis additively with IGF-I or PDGF. Recently, it has been suggested that bone and articular cartilage are rich sources of TGF-beta, whereas epiphyseal growth cartilage is not. Thus, the present data indicate that TGF-beta may be important in bone formation by modulating growth and phenotypic expression of chondrocytes in the growth plate, possibly via a paracrine mechanism.  相似文献   

16.
Partially purified porcine PDGF or purified human PDGF in the presence of phosphodiesterase inhibitors caused marked accumulation of cAMP in Swiss 3T3 cells. The responses were time- and dose-dependent; half-maximal effect was obtained at 0.6 nM PDGF. Indomethacin prevented the increase of cAMP levels in a dose-dependent manner; half-maximal effect was obtained at about 10 nM. Addition of PDGF increased (at least 25-fold) the production of E-type prostaglandins; PGE reached a concentration in the medium of 26 ng/ml 1 hr after treatment with human PDGF. This concentration of PGE produced a similar level of cAMP to that found with PDGF, suggesting that the PDGF-induced increase in cAMP is mediated by E-type prostaglandins released in the culture medium. Increased cAMP levels promoted by PDGF acting through stimulation of E-type prostaglandin synthesis may contribute to signal the initiation of cell proliferation in 3T3 cells.  相似文献   

17.
Fibroblasts represent one of the in vivo sites of insulin-like growth factor-I (IGF-I) production. In this study rat dermal fibroblasts in culture were used as a model system to assess the effect of activation of protein kinase-C on the levels of the mRNAs encoding IGF-I and another growth factor, basic fibroblast growth factor (bFGF). IGF-I and bFGF mRNA levels were determined using a solution hybridization/RNase protection assay. Treatment of cells in serum-free medium containing 0.25% BSA (MEM + BSA) with the tumor-promoting phorbol ester phorbol 12-myristate 13-acetate (PMA) decreased IGF-I and increased bFGF mRNA levels in a time- and dose-dependent fashion. The peak effect of 100 nM PMA on IGF-I mRNA levels occurred at 9 h, whereas the peak effect on bFGF mRNA levels occurred after 3 h of incubation. In dose-response studies, half-maximal inhibition of IGF-I mRNA levels was achieved with approximately 0.08 nM PMA, while half-maximal stimulation of bFGF mRNA levels was achieved with approximately 3 nM PMA. Inhibition of protein synthesis with cycloheximide abrogated the effect of PMA on bFGF mRNA levels, but only partially inhibited the effect of PMA on IGF-I mRNA levels. Studies employing sphingosine or staurosporine to inhibit protein kinase-C or preincubation in high doses of PMA to down-regulate protein kinase-C suggested that the effect of PMA on IGF-I and bFGF mRNA levels was mediated by activation of protein kinase-C, although both staurosporine and sphingosine had independent effects on the levels of these mRNAs and down-regulation of protein kinase-C had a sustained effect on IGF-I mRNA levels. Ligands known to activate protein kinase-C were then tested. Treatment of cells with 100 micrograms/ml of the synthetic diacylglycerol 1-oleoyl-2-acetyl-sn-glycerol decreased IGF-I mRNA levels to 25% and increased bFGF mRNA levels to 520% of the level present in cells maintained in MEM + BSA. Treatment of cells with thrombin or bradykinin also decreased IGF-I mRNA levels and increased bFGF mRNA levels, but whereas the effect of thrombin on IGF-I mRNA levels was marked, the effect of bradykinin was minimal, and whereas the effect of thrombin on bFGF mRNA levels was sustained, the effect of bradykinin was transient.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Stable transfectants of Chinese hamster ovary (CHO) cells were developed that expressed the protein encoded by a human insulin-like growth factor I (IGF-I) receptor cDNA. The transfected cells expressed approximately 25,000 high affinity receptors for IGF-I (apparent Kd of 1.5 X 10(-9) M), whereas the parental CHO cells expressed only 5,000 receptors per cell (apparent Kd of 1.3 X 10(-9) M). A monoclonal antibody specific for the human IGF-I receptor inhibited IGF-I binding to the expressed receptor and immunoprecipitated polypeptides of apparent Mr values approximately 135,000 and 95,000 from metabolically labeled lysates of the transfected cells but not control cells. The expressed receptor was also capable of binding IGF-II with high affinity (Kd approximately 3 nM) and weakly recognized insulin (with about 1% the potency of IGF-I). The human IGF-I receptor expressed in these cells was capable of IGF-I-stimulated autophosphorylation and phosphorylation of endogenous substrates in the intact cell. This receptor also mediated IGF-I-stimulated glucose uptake, glycogen synthesis, and DNA synthesis. The extent of these responses was comparable to the stimulation by insulin of the same biological responses in CHO cells expressing the human insulin receptor. These results indicate that the isolated cDNA encodes a functional IGF-I receptor and that there are no inherent differences in the abilities of the insulin and IGF-I receptors to mediate rapid and long term biological responses when expressed in the same cell type. The high affinity of this receptor for IGF-II also suggests that it may be important in mediating biological responses to IGF-II as well as IGF-I.  相似文献   

19.
20.
Dramatic smooth muscle cell (SMC) growth occurs in the uterine artery during pregnancy. The potential for pregnancy-associated growth may also exist at other vascular sites. We tested the hypothesis that increased growth of uterine artery SMC isolated from pregnant (vs. nonpregnant) guinea pigs would be detectable in culture, that pregnancy-associated phenotypic changes would also be found in nonuterine vascular cells (aortic SMC), and that the enhanced growth would be dependent on estrogen, peptide growth factors like platelet-derived growth factor (PDGF), and protein kinase C (PKC). Growth responses were measured by [3H]-thymidine incorporation and cell counts. Uterine artery SMC from pregnant guinea pigs grew to a higher plateau density with serum stimulation, had increased spontaneous DNA synthesis and persistent growth following serum withdrawal, and were more responsive to 3–30 ng/ml PDGF-BB than nonpregnant cells. Aortic SMC from pregnant animals also grew to a higher plateau density and had enhanced responsiveness to PDGF-BB. This increased response to PDGF-BB by pregnant uterine artery and aortic SMC (40–233% increase over nonpregnant PDGF result) was reproduced in nonpregnant cells by pretreatment for 1–24 h with 17-beta(β)-estradiol (30–100 nM). Neither the pregnancy-induced difference nor the estradiol pretreatment was associated with increased PDGF-BB binding activity. The synergistic effect of 17β-estradiol was partially (62%) reproduced with 17-alpha(α)-estradiol, an isomer which does not bind the estrogen receptor. This suggested that 17β-estradiol modulates the PDGF-BB response by both estrogen-receptor- and nonreceptor-mediated mechanisms. To test if the estrogen effects were dependent on PKC, two different antagonist strategies (3 μM dihydrosphingosine and phorbol-ester-induced downregulation) were applied prior to 17α- or β-estradiol and blocked the enhanced responses to PDGF. The synergistic effect of 17β-estradiol on PDGF was then reproduced by 1 h pretreatment with the cell-permeable PKC activator, 10 nM PMA. We conclude that pregnancy stimulates increased growth of uterine and aortic SMC in vitro which is dependent on estrogen, PDGF, and PKC and may be important in vascular remodeling during pregnancy. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号