首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A set of GnRH analogues containing the nuclear localization signal (NLS) of the SV-40 virus was synthesized using solid phase peptide synthesis and chemical ligation techniques. Selective chemical ligation was achieved through hydrazone formation upon the interaction of NLS hydrazide and GnRH analogue modified with pyruvic acid. The efficiency of the synthesized compounds was demonstrated in experiments on transfection of various human cancer cell lines with reporter luciferase and β-galactosidase genes, as well as suicide thymidine kinase gene of HSV-1. Selectivity of the peptide-DNA complex effect on cancer cells is achieved as a result of its penetration through the cell membrane via GnRH receptor-mediated endocytosis pathway.  相似文献   

2.
A set of GnRH analogues containing nuclear localization signal (NLS) of SV-40 virus large T-antigen have been synthesized using solid phase peptide synthesis and chemical ligation technique. Selective chemical ligation was achieved as a result of hydrazone formation in the course of interaction between NLS hydrazide and GnRH analog modified by pyruvic acid. The efficiency of synthesized peptide carriers was demonstrated in experiments with human cancer cells transfected by reporter luciferase and beta-galactosidase genes or suicide HSV-1 thymidine kinase gene. It was shown that selectivity of action on cancer cells can be achieved as a result of peptide/DNA complex penetration through the cell membrane by GnRH receptor-mediated endocytosis pathway.  相似文献   

3.
A nuclear localization signal (NLS) is required for the transport of karyophilic proteins from the cytoplasm to the nucleus. In this study, NLS was examined in terms of its effect on diverse cellular functions such as protein phosphorylation reactions. When synthetic peptides containing the NLS of SV40 T-antigen were injected into the cytoplasm of Xenopus oocytes, and the oocytes incubated with [32P]phosphorus-containing medium, a 32 kDa protein was found to be preferentially phosphorylated in an NLS-dependent manner. The incubation of fractionated cytosolic extracts prepared from mouse Ehrlich ascites tumor cells with [γ-32P]ATP in the presence of the NLS peptides, results in the stimulation of the phosphorylation of several proteins. Similar in vitro stimulation was observed by other functional NLS peptides such as those of polyoma virus T-antigen and nucleoplasmin. Little or no stimulation, however, was detected for peptides of mutant type and reverse type NLS of SV40 T-antigen, and the C-terminal portion of lamin B. Using an in vitro assay, the phosphorylation activity was fractionated chromatographically and a fraction was obtained which contained a high level of activity. The fraction was found to contain three major proteins having molecular masses of 95, 70, and 43 kDa. The in vivo and in vitro results are consistent with the existence of a protein kinase, called NLS kinase, that is specifically activated by NLS peptides.  相似文献   

4.
为鉴定富含脯氨酸核受体辅调节蛋白1(PNRC1)分子的核定位信号序列(nuclear localization signal sequence, NLS),在生物信息学方法预测的基础上,先构建野生型PNRC1及删除预测NLS的PNRC1突变体的绿色荧光蛋白(GFP)重组表达载体,转染细胞后通过激光共聚焦显微镜观察PNRC1分子在删除预测NLS后细胞内的定位变化.然后,将预测的NLS编码序列直接连到GFP表达载体上,以及将预测的NLS加到胞浆蛋白上构建其GFP重组表达载体,转染细胞,观察预测的NLS能否把构建的重组体都带到细胞核内.结果显示,删除PNRC1中预测的NLS后,其定位从细胞核中变为主要定位在细胞浆中,而预测的NLS能把GFP或胞浆中的蛋白带到细胞核中.研究表明,预测的NLS为PNRC1分子真正的NLS.  相似文献   

5.
Gonadotropin releasing hormone (GnRH) controls the activity of the gonadotrope cells of the pituitary gland and, as a consequence, is a critical component of the endocrine cascade that determines the growth, development, and functional activity of testicular tissue. The use of GnRH and GnRH analogs is common in domestic animal production systems. Although GnRH and GnRH analogs are most commonly used to control the fertility and reproductive events in female animals, GnRH agonists and antagonists are increasingly used to modulate the fertility, behavior, and productivity of male animals as well. This review will focus on recent advances in this use of GnRH agonists and antagonists.  相似文献   

6.
The nuclear localization sequences (NLSs) of the Ac transposase (TPase) protein have been characterized by indirect immunofluorescence detection of TPase deletion derivatives and TPase/β-glucuronidase (GUS) fusion proteins in transiently transfected Petunia cells. The TPase contains three NLSs near its amino-terminal end, NLS(44–62), NLS(159–178) and NLS(174–206), each of which is sufficient to redirect GUS to the nucleus. Deletion of the N-terminal 102 TPase residues including NLS(44–62) results in strongly reduced nuclear import of the truncated TPase. NLS(44–62) and NLS(159–178) are bipartite NLSs, whereas the structure of NLS(174–206) does not allow a classification into one of the three major NLS categories. NLS(174–206) overlaps with the basic DNA-binding domain of TPase. A substitution of two amino acids in this segment (HiS191→Arg and Arg193→His) results in a total loss of DNA-binding activity, but retains reduced NLS activity. Accordingly, the two functions can be separated. In addition, we show that a NLS-deficient 71 kDa TPase derivative is co-imported into the nucleus in the presence of wildtype TPase.  相似文献   

7.
The mammalian type I gonadotropin releasing hormone receptor (GnRH-R) is a structurally unique G protein-coupled receptor (GPCR) that lacks cytoplasmic tail sequences and displays inefficient plasma membrane expression (PME). Compared to its murine counterparts, the primate type I receptor is inefficiently folded and retained in the endoplasmic reticulum (ER) leading to a further reduction in PME. The decrease in PME and concomitant increase in intracellular localization of the mammalian GnRH-RI led us to characterize the spatial distribution of the human and mouse GnRH receptors in two human cell lines, HEK 293 and HTR-8/SVneo. In both human cell lines we found the receptors were expressed in the cytoplasm and were associated with the ER and nuclear membrane. A molecular analysis of the receptor protein sequence led us to identify a putative monopartite nuclear localization sequence (NLS) in the first intracellular loop of GnRH-RI. Surprisingly, however, neither the deletion of the NLS nor the addition of the Xenopus GnRH-R cytoplasmic tail sequences to the human receptor altered its spatial distribution. Finally, we demonstrate that GnRH treatment of nuclei isolated from HEK 293 cells expressing exogenous GnRH-RI triggers a significant increase in the acetylation and phosphorylation of histone H3, thereby revealing that the nuclear-localized receptor is functional. Based on our findings, we conclude that the mammalian GnRH-RI is an intracellular GPCR that is expressed on the nuclear membrane. This major and novel discovery causes us to reassess the signaling potential of this physiologically and clinically important receptor.  相似文献   

8.
Fibroblast growth factor-10 (FGF-10), a mitogen for the epithelial cells lining the lower urinary tract, has been identified inside urothelial cells, despite its acknowledged role as an extracellular signaling ligand. Recombinant (r)FGF-10 was determined by fluorescence microscopy optical sectioning to localize strongly to nuclei inside cultured urothelial cells. To clarify the possible role of a nuclear localization signal (NLS) in this translocation, a variant of rFGF-10 was constructed which lacked this sequence. rFGF-10(no NLS) was found in cytoplasm to a far greater degree than rFGF-10, identifying this motif as a possible NLS. Furthermore, this variant displayed poor or non-existent bioactivity compared to the wild-type protein in triggering mitogenesis in quiescent urothelial cells. The presence of rFGF-10(no NLS) in the nucleus suggested that additional interactions were also responsible for the nuclear accumulation of rFGF-10. The FGF-10 receptor was observed in cell nuclei regardless of the presence or concentration of exogenous rFGF-10 ligand. Co-localization studies between rFGF-10 and the FGF-10 receptor revealed a strong intracellular relationship between the two. This co-localization was seen in nuclei for both rFGF-10 and for rFGF-10(no NLS), although the correlation was weaker for rFGF-10(no NLS). These data show that an NLS-like motif of rFGF-10 is a partial determinant of its intracellular distribution and is necessary for its mitogenic activity. These advancements in the understanding of the activity of FGF-10 present an opportunity to engineer the growth factor as a therapeutic agent for the healing of damaged urothelial tissue.  相似文献   

9.
The armadillo protein SmgGDS promotes guanine nucleotide exchange by small GTPases containing a C-terminal polybasic region (PBR), such as Rac1 and RhoA. Because the PBR resembles a nuclear localization signal (NLS) sequence, we investigated the nuclear transport of SmgGDS with Rac1 or RhoA. We show that the Rac1 PBR has significant NLS activity when it is fused to green fluorescent protein (GFP) or in the context of full-length Rac1. In contrast, the RhoA PBR has very poor NLS activity when it is fused to GFP or in the context of full-length RhoA. The nuclear accumulation of both Rac1 and SmgGDS is enhanced by Rac1 activation and diminished by mutation of the Rac1 PBR. Conversely, SmgGDS nuclear accumulation is diminished by interactions with RhoA. An SmgGDS nuclear export signal sequence that we identified promotes SmgGDS nuclear export. These results suggest that SmgGDS. Rac1 complexes accumulate in the nucleus because the Rac1 PBR has NLS activity and because Rac1 supplies the appropriate GTP-dependent signal. In contrast, SmgGDS.RhoA complexes accumulate in the cytoplasm because the RhoA PBR does not have NLS activity. This model may be applicable to other armadillo proteins in addition to SmgGDS, because we demonstrate that activated Rac1 and RhoA also provide stimulatory and inhibitory signals, respectively, for the nuclear accumulation of p120 catenin. These results indicate that small GTPases with a PBR can regulate the nuclear transport of armadillo proteins.  相似文献   

10.
The binding affinity between a nuclear localization signal (NLS) and its import receptor is closely related to corresponding nuclear import activity. PTM‐based modulation of the NLS binding affinity to the import receptor is one of the most understood mechanisms to regulate nuclear import of proteins. However, identification of such regulation mechanisms is challenging due to the difficulty of assessing the impact of PTM on corresponding nuclear import activities. In this study we proposed NIpredict, an effective algorithm to predict nuclear import activity given its NLS, in which molecular interaction energy components (MIECs) were used to characterize the NLS‐import receptor interaction, and the support vector regression machine (SVR) was used to learn the relationship between the characterized NLS‐import receptor interaction and the corresponding nuclear import activity. Our experiments showed that nuclear import activity change due to NLS change could be accurately predicted by the NIpredict algorithm. Based on NIpredict, we developed a systematic framework to identify potential PTM‐based nuclear import regulations for human and yeast nuclear proteins. Application of this approach has identified the potential nuclear import regulation mechanisms by phosphorylation of two nuclear proteins including SF1 and ORC6. Proteins 2014; 82:2783–2796. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
Hepadnavirus genome replication involves cytoplasmic and nuclear stages, requiring balanced targeting of cytoplasmic nucleocapsids to the nuclear compartment. In this study, we analyze the signals determining capsid compartmentalization in the duck hepatitis B virus (DHBV) animal model, as this system also allows us to study hepadnavirus infection of cultured primary hepatocytes. Using fusions to the green fluorescent protein as a functional assay, we have identified a nuclear localization signal (NLS) that mediates nuclear pore association of the DHBV nucleocapsid and nuclear import of DHBV core protein (DHBc)-derived polypeptides. The DHBc NLS mapped is unique. It bears homology to repetitive NLS elements previously identified near the carboxy terminus of the capsid protein of hepatitis B virus, the human prototype of the hepadnavirus family, but it maps to a more internal position. In further contrast to the hepatitis B virus core protein NLS, the DHBc NLS is not positioned near phosphorylation target sites that are generally assumed to modulate nucleocytoplasmic transport. In functional assays with a knockout mutant, the DHBc NLS was found to be essential for nuclear pore association of the nucleocapsid. The NLS was found to be also essential for virus production from the full-length DHBV genome in transfected cells and from hepatocytes infected with transcomplemented mutant virus. Finally, the DHBc additionally displayed activity indicative of a nuclear export signal, presumably counterbalancing NLS function in the productive state of the infected cell and thereby preventing nucleoplasmic accumulation of nucleocapsids.  相似文献   

12.
13.
Enhancement of phage-mediated gene transfer by nuclear localization signal   总被引:4,自引:0,他引:4  
The cell membrane and the nuclear membrane are two major barriers hindering the free movement of various macromolecules through animal cells. Nevertheless, some proteins can actively bypass these barriers by dint of intrinsic peptidic signals, so incorporation of these signals might improve the efficacy of artificial gene delivery vehicles. We examined the role of the nuclear localization signal (NLS) in gene transfer, using recombinant lambda phage as a model of the polymer/DNA complexes. We prepared a lambda phage displaying a 32-mer NLS of SV40 T antigen on its surface (NLS phage), and found that this NLS phage, delivered into the cytoplasm by appropriate devices, has higher affinity for the nucleus and induces the expression of encapsulated marker genes more efficiently than does the wild-type phage. This suggests that the 32-mer NLS peptide will become a practical tool for artificial gene delivery vehicles with enhanced nuclear targeting activity.  相似文献   

14.
15.
Previous studies demonstrate that gonadotroph responsiveness to GnRH, GnRH binding, and the apparent number of GnRH receptors are all increased by 17 beta-estradiol (E) or inhibin (IN) in ovine pituitary cultures. Progesterone (P) attenuates these effects. To explore differences between the effects of IN and E on GnRH binding, a detailed time-course study was performed. The results indicate that after 48 h, IN had a greater effect on binding of a GnRH agonist (5-fold increase) than E (3-fold increase), but was slower to act initially. A combined treatment of IN and E gave a partially additive effect at 48 h (6.5-fold increase). The mechanism of receptor regulation in this system is not known, but could involve synthesis, recycling, or modification of GnRH receptors. To investigate the contribution of altered receptor biosynthesis to the regulation of receptor levels, a functional Xenopus oocyte-based assay for GnRH receptor mRNA activity was employed. After 48 h of treatment, IN or E each led to a 7- to 8-fold increase in GnRH receptor mRNA activity. Treatment with both hormones led to a 19-fold increase. The increase in mRNA activity induced by either hormone was greatly attenuated by P. Modulation of GnRH receptor mRNA levels suggests that IN, E, and P regulate responsiveness to GnRH in the ovine pituitary at least in part by altering de novo synthesis of GnRH receptors. The differing time courses of action, as assayed by GnRH binding, and the additivity of effects at the mRNA level suggest that IN and E alter mRNA levels via different mechanisms.  相似文献   

16.
17.
18.
The nucleocapsid protein VP15 of white spot syndrome virus (WSSV) is a basic DNA-binding protein. Three canonical bipartite nuclear localization signals (NLSs), called NLS1 (aa 11-27), NLS2 (aa 33-49) and NLS3 (44-60), have been detected in this protein, using the ScanProsite computer program. To determine the nuclear localization sequence of VP15, the full-length open reading frame, or the sequence of one of the three NLSs, was fused to the green fluorescent protein (GFP) gene, and transiently expressed in insect Sf9 cells. Transfection with full-length VP15 resulted in GFP fluorescence being distributed exclusively in the nucleus. NLS 1 alone could also direct GFP to the nucleus, but less efficiently. Neither of the other two NLSs (NLS2 and 3) was functional when expressed alone, but exhibited similar activity to NLS1 when they were expressed as a fusion peptide. Furthermore, a mutated VP15, in which the two basic amino acids (11RR12) of NLSI were changed to two alanines (11AA12), caused GFP to be localized only in the cytoplasm of Sf9 cells. These results demonstrated that VP15, as a nuclear localization protein, needs cooperation between its three NLSs, and that the two residues (11RR12) of NLS1 play a key role in transporting the protein to the nucleus.  相似文献   

19.
p53 is a major suppressor of human malignancy. The protein levels and activity are tightly regulated in cells. Early experiments identified nuclear localization signal 1 (NLS1) as a regulator of p53 localization. We have generated mice bearing a mutation in p53 NLS1 , designated p53 NLS1 . Our experiments confirm a role for NLS1 in regulating p53 function. Murine embryonic fibroblasts generated from homozygous p53 NLS1 animals are partially defective in cell cycle arrest and do not respond to inhibitory signals from oncogenic Ras. In addition, p53-dependent apoptosis is abrogated in thymocytes. Contrary to predicted results, fibroblasts from homozygous p53 NLS1 animals have a greater rate of proliferation than p53-null cells. In addition, p53 NLS1 cells are more resistant to UV-induced death. Surprisingly, the homozygous p53 NLS1 animals exhibit embryonic and peri-natal lethality, with a significant portion of the animals developing exencephaly. Thus, p53 NLS1/NLS1 embryos exhibit a reduced viability relative to p53-null mice. These studies indicate that the NLS1 is a major regulator of p53 activity in vivo.  相似文献   

20.
A novel method for peptide cyclization in solution: the azo cyclization is presented herein. Ring closure by forming an azo bridge was achieved in situ by connecting the corresponding side chains of para amino phenylalanine (Pap) residues to those of tyrosine or histidine residues present in the corresponding linear precursors. The reaction was performed using an initial diazotization step in acidic media followed by intramolecular azo cyclization in a mild basic media. This new method of cyclization is facile, applicable to various sequences and results in a high yield of pure products and hence is suggested as an additional method for peptide cyclization. Here we report the successful utilization of this method for the synthesis of 10 new cyclic azo peptides, derived from RGD, GnRH, Tuftsin, VIP and SV40 NLS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号