首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Several bottlenecks in the alcoholic fermentation process must be overcome to reach a very high and competitive performance of bioethanol production by the yeast Saccharomyces cerevisiae. In this paper, a nutritional strategy is described that allowed S. cerevisiae to produce a final ethanol titre of 19% (v/v) ethanol in 45 h in a fed-batch culture at 30 degrees C. This performance was achieved by implementing exponential feeding of vitamins throughout the fermentation process. In comparison to an initial addition of a vitamin cocktail, an increase in the amount of vitamins and an exponential vitamin feeding strategy improved the final ethanol titre from 126 g l(-1) to 135 g l(-1) and 147 g l(-1), respectively. A maximum instantaneous productivity of 9.5 g l(-1) h(-1) was reached in the best fermentation. These performances resulted from improvements in growth, the specific ethanol production rate, and the concentration of viable cells in response to the nutritional strategy.  相似文献   

2.
Heterologous protein production by the yeast Saccharomyces kluyveri was investigated under aerobic glucose-limited conditions. Alpha-amylase from Aspergillus oryzae was used as model protein and the gene was expressed from a S. cerevisiae 2 micro plasmid. For comparison, strains of both S. kluyveri and S. cerevisiae were transformed with the same plasmid, which led to secretion of active alpha-amylase in both cases. The S. cerevisiae 2 micro plasmid was found to be stable in S. kluyveri as evaluated by a constant alpha-amylase productivity in a continuous cultivation for more than 40 generations. S. kluyveri and S. cerevisiae secreted alpha-amylase with similar yields during continuous cultivations at dilution rates of 0.1 and 0.2 h(-1) (4.8-5.7 mg (g dry weight)(-1)). At a dilution rate of 0.3 h(-1) the metabolism of S. kluyveri was fully respiratory, whereas S. cerevisiae produced significant amounts of ethanol. A fed-batch cultivation was carried out with S. kluyveri where the biomass concentration reached 85 g l(-1) and the alpha-amylase concentration reached 320 mg l(-1). Even though S. kluyveri could be grown to high cell density, it was also observed that it has a high maintenance coefficient, which resulted in low biomass yields at the low specific growth rates prevailing towards the end of the fed-batch cultivation.  相似文献   

3.
The acid hydrolysis of cellulosic pyrolysate to glucose and its fermentation to ethanol were investigated. The maximum glucose yield (17.4%) was obtained by the hydrolysis with 0.2 mol sulfuric acid per liter pyrolysate using autoclaving at 121 degrees C for 20 min. The fermentation by Saccharomyces cerevisiae of a hydrolysate medium containing 31.6 g/l glucose gave 14.2 g/l ethanol in 24 h, whereas the fermentation of the medium containing 31.6 g/l pure glucose gave 13.7 g/l ethanol in 18 h. The results showed that the acid-hydrolyzed pyrolysate could be used for ethanol production. Different nitrogen sources were evaluated and the best ethanol concentration (15.1 g/l) was achieved by single urea. S. cerevisiae (R) was obtained by adaptation of S. cerevisiae to the hydrolysate medium for 12 times, and 40.2 g/l ethanol was produced by S. cerevisiae (R) in the fermentation with the hydrolysate medium containing 95.8 g/l glucose, which was about 47% increase in ethanol production compared to its parent strain.  相似文献   

4.
Acid-hydrolysis of cellulosic pyrolysate to glucose and its fermentation to ethanol were investigated. The maximum glucose yield (17.4%) was obtained by the hydrolysis with 0.2 mol/l sulfuric acid using autoclaving at 121 degrees C for 20 min. The fermentation by Saccharomyces cerevisiae of a hydrolysate medium containing 31.6 g/l glucose gave 14.2 g/l ethanol after 24 h, whereas the fermentation of the medium containing 31.6 g/l pure glucose gave 13.7 g/l ethanol after 18 h. The results showed that acid-hydrolyzed pyrolysate could be used for ethanol production. Different nitrogen sources were evaluated and the best ethanol concentration (15.1 g/l) was achieved by single urea. S. cerevisiae (R) was obtained by adaptation of S. cerevisiae to the hydrolysate medium for 12 times, and 40.2 g/l ethanol was produced by it in the fermentation with the hydrolysate medium containing 95.8 g/l glucose, which was about 47% increase in ethanol production compared to its parent strain.  相似文献   

5.
选育高乙醇耐性的酿酒酵母菌株对提高燃料乙醇的发酵效率具有重要意义.锌指蛋白广泛存在于多种生物中,对基因的转录和翻译起重要的调节作用.利用人工设计的锌指蛋白可定向设计锌指序列及其排列顺序,实现对细胞内多个基因的全局调控.由于与环境胁迫反应相关的基因很多,因此可利用人工锌指蛋白技术获得耐受性提高的微生物重组菌.文中将人工锌指文库转入到酿酒酵母模式菌株S288c,选育了具有高乙醇耐受性的重组菌株M01,并分离了与乙醇耐受性提高相关的人工锌指蛋白表达载体pRS316ZFP-M01,转入工业酿酒酵母Sc4126,在含有不同浓度乙醇的平板上,工业酵母Sc4126的重组菌株表现出显著的耐受性提高.在高糖培养基(250 g/L)条件下进行乙醇发酵,发现重组菌的乙醇发酵效率明显快于野生型,发酵时间提前24 h,且发酵终点乙醇浓度提高6.3%.结果表明人工锌指文库能够提高酵母的乙醇耐受性,为构建发酵性能优良的酵母菌种奠定了基础.  相似文献   

6.
7.
代谢工程与全基因组重组构建酿酒酵母抗逆高产乙醇菌株   总被引:1,自引:0,他引:1  
将酿酒酵母海藻糖代谢工程与全基因组重组技术相结合,改良工业酿酒酵母菌株的抗逆性和乙醇发酵性能。对来源于二倍体出发菌株Zd4的两株优良单倍体Z1和Z2菌株进行杂交获得基因组重组菌株Z12,并对Z1和Z2先进行(1)过表达海藻糖-6-磷酸合成酶基因 (TPS1) ,(2)敲除海藻糖水解酶基因 (ATH1), (3)同时过表达 TPS1和敲除ATH1, 经此三种基因工程操作后再进行杂交获得代谢工程菌株的全基因组重组菌株Z12ptps1、Z12 Δath1和Z12pTΔA。与亲株Zd4相比,Z12及结合代谢工程获得的菌株在高糖、高乙醇浓度与高温条件下生长与乙醇发酵性能都有不同程度的改进。对比研究结果表明:在高糖发酵条件下,同时过表达 TPS1和敲除ATH1 的双基因操作工程菌株胞内海藻糖积累、乙醇主发酵速率和乙醇产量相对于亲株的提高幅度要大于只过表达 TPS1,或敲除ATH1 的工程菌。结合了全基因组重组后获得的二倍体工程菌株Z12pTΔA,与原始出发菌株Zd4及重组子Z12相比,主发酵速率分别提高11.4%和6.3%,乙醇产量提高7.0%和4.1%,与其胞内海藻糖含量高于其它菌株、在胁迫条件下具有更强耐逆境能力相一致。结果证明,海藻糖代谢工程与杂交介导的全基因组重组相结合,是提高酿酒酵母抗逆生长与乙醇发酵性能的有效策略与技术途径。  相似文献   

8.
A total of 65 yeast strains were screened for their ability to grow and ferment lactose in a standard DURHAM tube test at 30 °C. Based on the kinetic parameters for lactose and whey lactose fermentations in shake flask cultures, the strain Candida psedotropicalis 65 was chosen for further studies. Some of the cultural parameters affecting ethanolic fermentations on lactose were standardized. At an initial lactose concentration of 100–120 g/l in the medium containing concentrated whey or lactose, at 40 °C and within 48 h, the selected strain reached an ethanol concentration of 41–59 g/l, an ethanol productivity of 1.3–3.0 g/l/h, a lactose consumption of 99%, an ethanol yield 0.4–0.49 g/g and a biomass yield of 0.027 g/g.  相似文献   

9.
Baker's yeast (Saccharomyces cerevisiae) has been genetically engineered to ferment the pentose sugar xylose present in lignocellulose biomass. One of the reactions controlling the rate of xylose utilization is catalyzed by xylose reductase (XR). In particular, the cofactor specificity of XR is not optimized with respect to the downstream pathway, and the reaction rate is insufficient for high xylose utilization in S. cerevisiae. The current study describes a novel approach to improve XR for ethanol production in S. cerevisiae. The cofactor binding region of XR was mutated by error-prone PCR, and the resulting library was expressed in S. cerevisiae. The S. cerevisiae library expressing the mutant XR was selected in sequential anaerobic batch cultivation. At the end of the selection process, a strain (TMB 3420) harboring the XR mutations N272D and P275Q was enriched from the library. The V(max) of the mutated enzyme was increased by an order of magnitude compared to that of the native enzyme, and the NADH/NADPH utilization ratio was increased significantly. The ethanol productivity from xylose in TMB 3420 was increased ~40 times compared to that of the parent strain (0.32 g/g [dry weight {DW}] × h versus 0.007 g/g [DW] × h), and the anaerobic growth rate was increased from ~0 h(-1) to 0.08 h(-1). The improved traits of TMB 3420 were readily transferred to the parent strain by reverse engineering of the mutated XR gene. Since integrative vectors were employed in the construction of the library, transfer of the improved phenotype does not require multicopy expression from episomal plasmids.  相似文献   

10.
11.
能够耐受纤维素预处理中抑制剂的酿酒酵母对高效、经济生产纤维素乙醇至关重要。利用诱变结合驯化工程选育了一株可耐受复合抑制剂(1.3g/L糠醛、5.3g/L乙酸及1.0g/L苯酚)的工业酿酒酵母YYJ003。在pH 4.0的含有抑制剂的培养基中,耐受菌株乙醇产率是原始菌株的7.8倍,糠醛转化速率提高了5倍。在pH 5.5的复合抑制剂条件下,YYJ003发酵时间(16h)比野生菌株发酵时间(22h)缩短6h。在pH 4.0的未脱毒的玉米秸秆水热法预处理水解液中YYJ003的乙醇产率达到0.50g/g(乙醇/葡萄糖),乙醇产速达到4.16g/(L·h),而对照菌株无乙醇产出。  相似文献   

12.
Spent sulfite pulping liquor (SSL) is a high-organic content byproduct of acid bisulfite pulp manufacture which is fermented to make industrial ethanol. SSL is typically concentrated to 240 g/l (22% w/w) total solids prior to fermentation, and contains up to 24 g/l xylose and 30 g/l hexose sugars, depending upon the wood species used. The xylose present in SSL is difficult to ferment using natural xylose-fermenting yeast strains due to the presence of inhibitory compounds, such as organic acids. Using sequential batch shake flask experiments, Saccharomyces cerevisiae 259ST, which had been genetically modified to ferment xylose, was compared with the parent strain, 259A, and an SSL adapted strain, T2, for ethanol production during SSL fermentation. With an initial SSL pH of 6, without nutrient addition or SSL pretreatment, the ethanol yield ranged from 0.32 to 0.42 g ethanol/g total sugar for 259ST, compared to 0.15-0.32 g ethanol/g total sugar for non-xylose fermenting strains. For most fermentations, minimal amounts of xylitol (<1 g/l) were produced, and glycerol yields were approximately 0.12 g glycerol/g sugar consumed. By using 259ST for SSL fermentation up to 130% more ethanol can be produced compared to fermentations using non-xylose fermenting yeast.  相似文献   

13.
This study describes a novel strategy to improve the glycolysis flux of Saccharomyces cerevisiae at high temperature. The TSL1 gene-encoding regulatory subunit of the trehalose synthase complex was overexpressed in S. cerevisiae Z-06, which increased levels of trehalose synthase activity in extracts, enhanced stress tolerance and glucose consuming rate of the yeast cells. As a consequence, the final ethanol concentration of 185.5 g/L was obtained at 38 °C for 36 h (with productivity up to 5.2 g/L/h) in 7-L fermentor, and the ethanol productivity was 92.7 % higher than that of the parent strain. The results presented here provide a novel way to enhance the carbon metabolic flux at high temperature, which will be available for the purposes of producing other primary metabolites of commercial interest using S. cerevisiae as a host.  相似文献   

14.
The aim of this study was to develop a method to optimize expression levels of xylose-metabolizing enzymes to improve xylose utilization capacity of Saccharomyces cerevisiae. A xylose-utilizing recombinant S. cerevisiae strain YY2KL, able to express nicotinamide adenine dinucleotide phosphate, reduced (NADPH)-dependent xylose reductase (XR), nicotinamide adenine dinucleotide (NAD(+))-dependent xylitol dehydrogenase (XDH), and xylulokinase (XK), showed a low ethanol yield and sugar consumption rate. To optimize xylose utilization by YY2KL, a recombinant expression plasmid containing the XR gene was transformed and integrated into the aur1 site of YY2KL. Two recombinant expression plasmids containing an nicotinamide adenine dinucleotide phosphate (NADP(+))-dependent XDH mutant and XK genes were dually transformed and integrated into the 5S ribosomal DNA (rDNA) sites of YY2KL. This procedure allowed systematic construction of an S. cerevisiae library with different ratios of genes for xylose-metabolizing enzymes, and well-grown colonies with different xylose fermentation capacities could be further selected in yeast protein extract (YPX) medium (1?% yeast extract, 2?% peptone, and 2?% xylose). We successfully isolated a recombinant strain with a superior xylose fermentation capacity and designated it as strain YY5A. The xylose consumption rate for strain YY5A was estimated to be 2.32?g/gDCW/h (g xylose/g dry cell weight/h), which was 2.34 times higher than that for the parent strain YY2KL (0.99?g/gDCW/h). The ethanol yield was also enhanced 1.83 times by this novel method. Optimal ratio and expression levels of xylose-metabolizing enzymes are important for efficient conversion of xylose to ethanol. This study provides a novel method that allows rapid and effective selection of ratio-optimized xylose-utilizing yeast strains. This method may be applicable to other multienzyme systems in yeast.  相似文献   

15.
During the fermentation process of Saccharomyces cerevisiae, yeast cells must rapidly respond to a wide variety of external stresses in order to survive the constantly changing environment, including ethanol stress. The accumulation of ethanol can severely inhibit cell growth activity and productivity. Thus, the response to changing ethanol concentrations is one of the most important stress reactions in S. cerevisiae and worthy of thorough investigation. Therefore, this study examined the relationship between ethanol tolerance in S. cerevisiae and a unique protein called alcohol sensitive RING/PHD finger 1 protein (Asr1p). A real-time PCR showed that upon exposure to 8% ethanol, the expression of Asr1 was continuously enhanced, reaching a peak 2 h after stimulation. This result was confirmed by monitoring the fluorescence levels using a strain with a green fluorescent protein tagged to the C-terminal of Asr1p. The fluorescent microscopy also revealed a change in the subcellular localization before and after stimulation. Furthermore, the disruption of the Asr1 gene resulted in hypersensitivity on the medium containing ethanol, when compared with the wild-type strain. Thus, when taken together, the present results suggest that Asr1 is involved in the response to ethanol stress in the yeast S. cerevisiae.  相似文献   

16.
【目的】提高酿酒酵母的高耐温性,从而提高菌株在高温下的乙醇发酵性能。【方法】利用染色体整合过表达酿酒酵母液泡蛋白酶B编码基因PRB1。【结果】在41 °C高温条件下进行乙醇发酵,过表达PRB1基因的重组酿酒酵母菌株可在31 h内消耗全部的葡萄糖,而对照菌株在相同时间内仅消耗不到一半的葡萄糖。【结论】利用蛋白酶B基因过表达可构建耐高温酿酒酵母菌株,提高在高温条件下乙醇的发酵效率。  相似文献   

17.
Summary Zymomonas mobilis strain ZM4 was used for ethanol production from fructose (100 g/l) in continuous culture with a mineral (containing Ca pantothenate) or a rich (containing yeast extract) mediium. With both media high conversion yields were observed but the ethanol productivity was limited by the low biomass content of the fermentor. A new flocculent strain of Z.mobilis (ZM4F) was cultivated in a CSTR with an internal settler and showed a maximal productivity of 93 g/l.h (fructose conversion of 80%). When the fructose conversion was 96% an ethanol productivity of 85.6 g/l.h with an ethanol yield of 0.49 g/g (96% of theoretical) was observed.  相似文献   

18.
A Strain of host yeast YF207, which is a tryptophan auxotroph and shows strong flocculation ability, was obtained from SaccharomYces diastaticus ATCC60712 and S. cerevisiae W303-1B by tetrad analysis. The plasmid pGA11, which is a multicopy plasmid for cell-surface expression of the Rhyzopus oryzae glucoamylase/alpha-agglutinin fusion protein, was then introduced into this flocculent yeast strain (YF207/pGA11). Yeast YF207/pGA11 grew rapidly under aerobic condition (dissolved oxygen 2.0 ppm), using soluble starch. The harvested cells were used for batch fermentation of soluble starch to ethanol under anaerobic condition and showed high ethanol production rates (0.71 g h(-1) l(-1)) without a time lag, because glucoamylase was immobilized on the yeast cell surface. During repeated utilization of cells for fermentation, YF207/pGA11 maintained high ethanol production rates over 300 h. Moreover, in fed-batch fermentation with YF207/pGA11 for approximately 120 h, the ethanol concentration reached up to 50 g l(-1). In conclusion, flocculent yeast cells displaying cell-surface glucoamylase are considered to be very effective for the direct fermentation of soluble starch to ethanol.  相似文献   

19.
乙酸是木质纤维素类生物质水解液中的常见毒性抑制物,选育乙酸耐受性好的酿酒酵母菌株,有利于高效利用木质纤维素类生物质,发酵生产生物燃料和生物基化学品。目前对酿酒酵母抗逆性的研究多集中在转录水平,但对转运RNA (Transfer RNA,tRNA) 在耐受性中的作用研究较少。在对酿酒酵母抗逆性研究过程中发现,一些转运RNA基因在耐受性好的酿酒酵母菌株中转录明显上调。本文深入分析了精氨酸tRNA基因tR(ACG)D和亮氨酸tRNA基因tL(CAA)K过表达对酿酒酵母耐受木质纤维素水解液的影响。结果表明,在4.2 g/L乙酸胁迫条件下进行乙醇发酵时,过表达tL(CAA)K的菌株生长和发酵性能均优于对照酵母菌株,乙醇生产强度比对照菌株提高了29.41%,但过表达tR(ACG)D基因的菌株生长和代谢能力较对照菌株明显降低,体现了不同tRNA的不同调控作用。进一步分析发现,过表达tL(CAA)K的重组酵母菌株乙酸耐受性调控相关基因HAA1、MSN2和MSN4等胁迫耐受性相关转录因子编码基因的转录水平上调。本文的研究为选育高效利用木质纤维素资源进行生物炼制的酵母菌株提供了新的改造策略,也为进一步揭示酿酒酵母tRNA基因表达调控对抗逆性的影响提供了基础。  相似文献   

20.
利用核糖体工程选育丙酮丁醇菌提高丁醇产量   总被引:1,自引:0,他引:1  
利用核糖体工程技术对丙酮丁醇梭菌Clostridium acetobutylicum L7进行诱变筛选,以获得丁醇高产菌株。使用链霉素诱变C.acetobutylicum L7并结合设计的平板转接逐次提高链霉素浓度的筛选路线,获得丁醇产量较高的菌株S3。结果表明,S3丁醇产量为(12.48±0.03)g/L,乙醇产量为(1.70±0.07)g/L,相对于原始菌分别提高了11.2%及50%;丁醇/葡萄糖转化率由原始菌的0.19提高到0.22,丁醇生产率达到0.24 g/(L.h),相比提高30.5%;耐受丁醇浓度由原始菌的12 g/L提高到14 g/L;发酵液粘度下降到4 mPa/s,同比降低了60%,利于后续分离工作的进行,降低发酵成本。进一步研究工作表明,S3菌株遗传稳定性良好。因此,核糖体工程技术是一种选育丁醇高产菌株的有效方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号