首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 336 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Mutant forms of Escherichia coli NRII (NtrB) were isolated that retained wild-type NRII kinase activity but were defective in the PII-activated phosphatase activity of NRII. Mutant strains were selected as mimicking the phenotype of a strain (strain BK) that lacks both of the related PII and GlnK signal transduction proteins and thus has no mechanism for activation of the NRII phosphatase activity. The selection and screening procedure resulted in the isolation of numerous mutants that phenotypically resembled strain BK to various extents. Mutations mapped to the glnL (ntrB) gene encoding NRII and were obtained in all three domains of NRII. Two distinct regions of the C-terminal, ATP-binding domain were identified by clusters of mutations. One cluster, including the Y302N mutation, altered a lid that sits over the ATP-binding site of NRII. The other cluster, including the S227R mutation, defined a small surface on the "back" or opposite side of this domain. The S227R and Y302N proteins were purified, along with the A129T (NRII2302) protein, which has reduced phosphatase activity due to a mutation in the central domain of NRII, and the L16R protein, which has a mutation in the N-terminal domain of NRII. The S227R, Y302N, and L16R proteins were specifically defective in the PII-activated phosphatase activity of NRII. Wild-type NRII, Y302N, A129T, and L16R proteins bound to PII, while the S227R protein was defective in binding PII. This suggests that the PII-binding site maps to the "back" of the C-terminal domain and that mutation of the ATP-lid, central domain, and N-terminal domain altered functions necessary for the phosphatase activity after PII binding.  相似文献   

11.
12.
13.
14.
Wolanin PM  Webre DJ  Stock JB 《Biochemistry》2003,42(47):14075-14082
Response regulator proteins are phosphorylated on a conserved aspartate to activate responses to environmental signals. An intrinsic autophosphatase activity limits the duration of the phosphorylated state. We have previously hypothesized that dephosphorylation might proceed through an intramolecular attack, leading to succinimide formation, and such an intramolecular dephosphorylation event is seen for CheY and OmpR during mass spectrometric analysis [Napper, S., Wolanin, P. M., Webre, D. J., Kindrachuk, J., Waygood, B., and Stock, J. B. (2003) FEBS Lett 538, 77-80]. Succinimide formation is usually associated with the spontaneous deamidation of Asn residues. We show here that an Asp57 to Asn mutant of the CheY chemotaxis response regulator undergoes an unusually rapid deamidation back to the wild-type Asp57, supporting the hypothesis that the active site of CheY is poised for succinimide formation. In contrast, we also show that the major route of phosphoaspartate hydrolysis in CheY occurs through water attack on the phosphorus both during autophosphatase activity and during CheZ-mediated dephosphorylation. Thus, CheY dephosphorylation does not usually proceed via a succinimide or any other intramolecular attack.  相似文献   

15.
ZntA, a bacterial zinc-transporting P-type ATPase, is homologous to two human ATPases mutated in Menkes and Wilson diseases. To explore the roles of the bacterial ATPase residues homologous to those involved in the human diseases, we have introduced several point mutations into ZntA. The mutants P401L, D628A and P634L correspond to the Wilson disease mutations P992L, D1267A and P1273L, respectively. The mutations D628A and P634L are located in the C-terminal part of the phosphorylation domain in the so-called hinge motif conserved in all P-type ATPases. P401L resides near the N-terminal portion of the phosphorylation domain whereas the mutations H475Q and P476L affect the heavy metal ATPase-specific HP motif in the nucleotide binding domain. All mutants show reduced ATPase activity corresponding 0-37% of the wild-type activity. The mutants P401L, H475Q and P476L are poorly phosphorylated by both ATP and P(i). Their dephosphorylation rates are slow. The D628A mutant is inactive and cannot be phosphorylated at all. In contrast, the mutant P634L six residues apart in the same domain shows normal phosphorylation by ATP. However, phosphorylation by P(i) is almost absent. In the absence of added ADP the P634L mutant dephosphorylates much more slowly than the wild-type, whereas in the presence of ADP the dephosphorylation rate is faster than that of the wild-type. We conclude that the mutation P634L affects the conversion between the states E1P and E2P so that the mutant favors the E1 or E1P state.  相似文献   

16.
Activation of Cdc2-cyclin B (or M phase-promoting factor (MPF)) at the prophase/metaphase transition proceeds in two steps: dephosphorylation of Cdc2 and phosphorylation of cyclin B. We here investigated the regulation of cyclin B phosphorylation using the starfish oocyte model. Cyclin B phosphorylation is not required for Cdc2 kinase activity; both the prophase complex dephosphorylated on Cdc2 with Cdc25 and the metaphase complex dephosphorylated on cyclin B with protein phosphatase 2A display high kinase activities. An in vitro assay of cyclin B kinase activity closely mimics in vivo phosphorylation as shown by phosphopeptide maps of in vivo and in vitro phosphorylated cyclin B. We demonstrate that Cdc2 itself is the cyclin B kinase; cyclin B phosphorylation requires Cdc2 activity both in vivo (sensitivity to vitamin K3, a Cdc25 inhibitor) and in vitro (copurification with Cdc2-cyclin B, requirement of Cdc2 dephosphorylation, and sensitivity to chemical inhibitors of cyclin-dependent kinases). Furthermore, cyclin B phosphorylation occurs as an intra-M phase-promoting factor reaction as shown by the following: 1) active Cdc2 is unable to phosphorylate cyclin B associated to phosphorylated Cdc2, and 2) cyclin B phosphorylation is insensitive to enzyme/substrate dilution. We conclude that, at the prophase/metaphase transition, cyclin B is mostly phosphorylated by its own associated Cdc2 subunit.  相似文献   

17.
By means of a functional expression system and site-directed mutagenesis, we analyzed the role of the putative K(+)-binding site, Glu-345, located in the fourth transmembrane segment of the gastric H(+),K(+)-ATPase alpha-subunit. In the present study, we used several mutants, with alanine, isoleucine, leucine, glutamine, valine, lysine, and aspartic acid instead of Glu-345, and analyzed the H(+),K(+)-ATPase partial reactions of the mutants to determine the precise role of this residue. All the mutants except E345Q exhibited no H(+),K(+)-ATPase activity. The E345Q mutant showed 3-times higher affinity for ATP. This mutation shifted the optimum pH toward a more alkaline one. The E345A, E345I, E345L, E345V as well as E345Q mutants were phosphorylated with ATP as in the case of the wild-type H(+),K(+)-ATPase, whereas the E345K mutant was not phosphorylated. The E345Q mutant was dephosphorylated in the presence of K(+), but its affinity for K(+) was significantly lower than that of the wild type. The E345A, E345I, E345L, and E345V mutants did not exhibit sensitivity to K(+) in the dephosphorylation step below 3 mM K(+). Therefore, Glu-345 is important for the conformational change induced by K(+), especially in the dephosphorylation step in which K(+) reacts with the enzyme from the luminal side with high affinity and accelerates the release of inorganic phosphate. The glutamic acid in the fourth transmembrane segment is conserved, and was found to be involved in the cation-induced conformational change in H(+),K(+)-ATPase as well as Na(+),K(+)-ATPase and Ca(2+)-ATPase, however, the precise roles of the side chain in the function were different.  相似文献   

18.
The secretory vesicle protein synaptotagmin I (syt) plays a critical role in Ca2+-triggered exocytosis. Its cytoplasmic domain is composed of tandem C2 domains, C2A and C2B; each C2 domain binds Ca2+. Upon binding Ca2+, positively charged residues within the Ca2+-binding loops are thought to interact with negatively charged phospholipids in the target membrane to mediate docking of the cytoplasmic domain of syt onto lipid bilayers. The C2 domains of syt also interact with syntaxin and SNAP-25, two components of a conserved membrane fusion complex. Here, we have neutralized single positively charged residues at the membrane-binding interface of C2A (R233Q) and C2B (K366Q). Either of these mutations shifted the Ca2+ requirements for syt-liposome interactions from approximately 20 to approximately 40 microm Ca2+. Kinetic analysis revealed that the reduction in Ca2+-sensing activity was associated with a decrease in affinity for membranes. These mutations did not affect sytsyntaxin interactions but resulted in an approximately 50% loss in SNAP-25 binding activity, suggesting that these residues lie at an interface between membranes and SNAP-25. Expression of full-length versions of syt that harbored these mutations reduced the rate of exocytosis in PC12 cells. In both biochemical and functional assays, effects of the R233Q and K366Q mutations were not additive, indicating that mutations in one domain affect the activity of the adjacent domain. These findings indicate that the tandem C2 domains of syt cooperate with one another to trigger release via loop-mediated electrostatic interactions with effector molecules.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号