首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied parent-to-progeny transfer of bacteriophage φX174 DNA during infection of Escherichia coli with isotopically-labeled, lysis-defective phage. After 60 minutes of infection at low multiplicities, 25 to 30% of the input viral DNA is transferred from the double-stranded replicative form into progeny phage; another 10 to 20% is transferred into the progeny single-stranded DNA pool. Thus, at times beyond the normal time of lysis, about 35 to 50% of the parental deoxyribonucleotides are found in progeny single-stranded DNA. Three quarters of the parental label found in the progeny phage is transferred by a dispersive process and one-quarter is transferred by a conservative, or non-dispersive, process such that the parental strand remains intact. At high multiplicities of infection the fraction of parental label transferred decreases.  相似文献   

2.
Orientation of the DNA in the filamentous bacteriophage f1   总被引:9,自引:0,他引:9  
The filamentous bacteriophage f1 consists of a molecule of circular single-stranded DNA coated along its length by about 2700 molecules of the B protein. Five molecules of the A protein and five molecules of the D protein are located near or at one end of the virion, while ten molecules of the C protein are located near or at the opposite end. The two ends of the phage can be separated by reacting phage fragments, which have been generated by passage of intact phage through a French press, with antibody directed against the A protein (Grant et al., 1981a). By hybridizing the DNA isolated from either end of 32P-labeled phage to specific restriction fragments of fl replicative form I DNA, we have determined that the single-stranded DNA of the filamentous bacteriophage f1 is oriented within the virion. For wild-type phage, the DNA that codes for the gene III protein is located at the A and D protein end and that which corresponds to the intergenic region is located close to the C protein end of the particle. The intergenic region codes for no protein but contains the origins for both viral and complementary strand DNA synthesis. Analysis of the DNA orientation in phage in which the plasmid pBR322 has been inserted into different positions within the intergenic region of fl shows that the C protein end of all sizes of filamentous phage particles appears to contain a common sequence of phage DNA. This sequence is located near the junction of gene IV and the intergenic region, and probably is important for normal packaging of phage DNA into infectious particles. There appears to be no specific requirement for the origins of viral and complementary strand DNA synthesis to be at the end of a phage particle.  相似文献   

3.
Lipid-containing bacteriophage PRD1 has a double-stranded DNA genome of about 14,500 nucleotide base pairs. The phage can infect Escherichia coli and Salmonella typhimurium as well as other gram-negative bacteria harboring an appropriate plasmid. [35S]methionine label is incorporated into the DNA band early in infection. The label remains associated with DNA through phenol extraction and boiling with sodium dodecyl sulfate. Nuclease treatment of the genome released a protein which migrated as an early phage-specific protein (P8). This protein is also necessary for phage DNA replication. By restriction enzyme analysis it was shown that protein was associated with the terminal restriction fragments. Extracts of infected cells catalyzed the labeling of protein P8 with [alpha-32P]dGTP.  相似文献   

4.
Selective inhibition of specific genes can be accomplished using genetic suppressor elements (GSEs) that encode antisense RNA, dominant negative mutant proteins, or other regulatory products. GSEs may correspond to partial sequences of target genes, usually identified by trial and error. We have used bacteriophage lambda as a model system to test a concept that biologically active GSEs may be generated by random DNA fragmentation and identified by expression selection. Fragments from eleven different regions of lambda genome, encoding specific peptides or antisense RNA sequences, rendered E. coli resistant to the phage. Analysis of these GSEs revealed some previously unknown functions of phage lambda, including suppression of the cellular lambda receptor by an 'accessory' gene of the phage. The random fragment selection strategy provides a general approach to the generation of efficient GSEs and elucidation of novel gene functions.  相似文献   

5.
Using oligonucleotide probes with defined sequences, we have selected clones from a human lymphocyte cDNA library which represent human leukocyte (HuIFN-α) and fibroblast (HuIFN-β) interferon gene sequences. Double-stranded f1 phage DNA was used as the vector for initial cloning of cDNA. Clones carrying interferon gene sequences were identified by hybridization with the oligonucleotide probes. The same oligonucleotide probes were used as primers for dideoxy chain termination sequencing of the clones. One HuIFN-α clone, 201, has a nucleotide sequence different from published HuIFN-α sequences. Under control of the lacUV5 promoter, the 201 gene has been used to express biologically active HuIFN-α in Escherichia coli.  相似文献   

6.
Infection of Escherichia coli by bacteriophage T2 was accompanied by a rapid but transient increase in the rate of loss of small molecules from the bacterial cells. This transient leakage was studied with radioactive labels such as (42)K and (28)Mg. Bacteriophage-induced leakage was dependent on the ratio of phage to bacteria: the higher the multiplicity of infection, the greater the leakage. No leakage occurred at 4 C [when adsorption proceeds but injection of phage deoxyribonucleic acid (DNA) is blocked]. Leakage was caused by heavily irradiated phage as well as by normal phage; therefore, the intracellular functioning of the bacteriophage DNA was not required. This conclusion was supported by experiments which showed phage-induced leakage in the presence of chloramphenicol or sodium cyanide. Leakage could be prevented by infecting the bacteria with phage in the presence of high magnesium concentrations. Phage-induced leakage was terminated by a "sealing" reaction, after which potassium turnover by infected and uninfected cells was very similar. The sealing reaction occurred even in the presence of chloramphenicol, suggesting that the sealing is controlled by bacterial and not bacteriophage genes. We were not able to detect any effect of normal bacteriophage infection on the influx (active transport) of potassium and magnesium into the cells.  相似文献   

7.
Escherichia coli cultures were infected with bacteriophage T4. [3H]thymidine was added at the time of infection to label newly-synthesized phage DNA. The infected cells were lysed and the phage chromosomes spread out on Millipore membranes for autoradiographic visualization. Circular forms varying in circumference from one to 21 times the length of a single mature phage chromosome were observed. Linear branches were often appended to these circles, and circles with one, two and four branches were observed. In some cases these branches were much longer than the circumference of the circle to which they were connected. Linear stretches of DNA several-fold longer than the mature phage chromosome were also common and these frequently had one or more branches. The various forms observed are discussed with respect to the rolling circle mechanism of DNA replication.  相似文献   

8.
The DNA of the temperate bacteriophage Aaφ23 isolated from the oral bacterium Actinobacillus actinomycetemcomitans was examined structurally both in the phage head and in the prophage. The DNA in phage particles comprises 44 kb linear molecules with a terminal redundancy of 1.6 kb, which represent circular permutations. Thus, DNA is packaged into phage heads by the headful mechanism. The Aaφ23 prophage is integrated into the host chromosome. Received: 15 September 1997 / Accepted: 10 December 1997  相似文献   

9.
K Geider  C Hohmeyer  R Haas  T F Meyer 《Gene》1985,33(3):341-349
DNA cloning vectors were developed which utilize the replication origin (ori) of bacteriophage fd for their propagation. These vectors depend on the expression of viral gene 2 that was inserted into phage lambda, which in turn was integrated into the host genome. The constitutive expression of gene 2 in the host cells is sufficient for the propagation of at least 100 pfd plasmids per cell. In addition to the fd ori, the pfd vectors carry various antibiotic-resistance genes and unique restriction sites. Some of these vectors have no homologies to commonly used pBR plasmids or to lambda DNA. The nucleotide sequence of the vectors can be deduced from published sequences. Large DNA inserts can be stably propagated in pfd vectors; these are more stable than similar DNA fragments cloned in intact genomes of filamentous bacteriophage. Inclusion of phage sequences required for efficient phage packaging and infection with a helper phage resulted in formation of phage particles containing single-stranded plasmid genomes. Growth at 42 degrees C without selective pressure results in loss of pfd plasmids.  相似文献   

10.
Initial attachment of bacteriophage P22 to the Salmonella host cell is known to be mediated by interactions between lipopolysaccharide (LPS) and the phage tailspike proteins (TSP), but the events that subsequently lead to DNA injection into the bacterium are unknown. We used the binding of a fluorescent dye and DNA accessibility to DNase and restriction enzymes to analyze DNA ejection from phage particles in vitro. Ejection was specifically triggered by aggregates of purified Salmonella LPS but not by LPS with different O-antigen structure, by lipid A, phospholipids, or soluble O-antigen polysaccharide. This suggests that P22 does not use a secondary receptor at the bacterial outer membrane surface. Using phage particles reconstituted with purified mutant TSP in vitro, we found that the endorhamnosidase activity of TSP degrading the O-antigen polysaccharide was required prior to DNA ejection in vitro and DNA replication in vivo. If, however, LPS was pre-digested with soluble TSP, it was no longer able to trigger DNA ejection, even though it still contained five O-antigen oligosaccharide repeats. Together with known data on the structure of LPS and phage P22, our results suggest a molecular model. In this model, tailspikes position the phage particles on the outer membrane surface for DNA ejection. They force gp26, the central needle and plug protein of the phage tail machine, through the core oligosaccharide layer and into the hydrophobic portion of the outer membrane, leading to refolding of the gp26 lazo-domain, release of the plug, and ejection of DNA and pilot proteins.  相似文献   

11.
Abstract: Seven bacteriophage (Φ1R, Φ10W, Φ3R, Φ30W, Φ1261 M, Φ1261 V and Φgor3V), specific for the Rhizobium galegae species and representing three morphotypes, were isolated from different locations in Finland and in New Zealand. DNA was isolated from these phage and from phage Φ1R-3 and Φ1R', which were derived from Φ1R in the laboratory, and analyzed by restriction endonuclease digestion and dot blot DNA hybridization. The sizes of the phage DNAs were estimated to range from 45.1–114.6 kb. The restriction patterns revealed four different phage genotypes, which correlated with the isolation hosts. DNA hybridization showed that the four genotypes were distantly related. The genotypes were distinguished when purified phage protein was analyzed in SDS-PAGE gels.  相似文献   

12.
We investigated the synthesis of DNA in toluene-treated cells prepared from Escherichia coli infected with bacteriophage T4. If the phage carry certain rII deletion mutations, those which extend into the nearby D2a region, the following results are obtained: (i) phage DNA synthesis occurs unless the phage carries certain DNA-negative mutations; and (ii) host DNA synthesis occurs even though the phage infection has already resulted in the cessation of host DNA synthesis in vivo. The latter result indicates that the phage-induced cessation of host DNA synthesis is not due to an irreversible inactivation of an essential component of the replication apparatus. If the phage are D2a(+), host DNA synthesis in toluene-treated infected cells is markedly reduced; phage DNA synthesis is probably also reduced somewhat. These D2a effects, considered along with our earlier work, suggest that a D2a-controlled nuclease, specific for cytosine-containing DNA, is active in toluene-treated cells.  相似文献   

13.
The curves of UV (254 nm)-inactivation and inactivation by furocoumarin derivatives + UVA radiation (PUVA) of bacteriophage lambda and biologically active plasmid pBR322 were measured using Escherichia coli K12 bacteria with different defects of DNA repair system as a ghost. The ratio of mono- and diadducts (interstrand cross-links) of 8-methoxypsoralen was determined that are formed after treating the DNA of pBR322 and bacteriophage lambda with PUVA. It is shown that, on the average, about five monoadducts per one diadduct are formed in DNA of pBR322, and about 0.9 monoadducts per one diadduct are formed in lambda phage DNA. An increased (up to 50%) efficiency of SOS-repair of monoadducts of 8-methoxypsoralen in DNA of pBR322 and lambda in the presence of plasmid pKM101 muc+ (incN) was found.  相似文献   

14.
Conserved bacteriophage ATP-based DNA translocation motors consist of a multimeric packaging terminase docked onto a unique procapsid vertex containing a portal ring. DNA is translocated into the empty procapsid through the portal ring channel to high density. In vivo the T4 phage packaging motor deals with Y- or X-structures in the replicative concatemer substrate by employing a portal-bound Holliday junction resolvase that trims and releases these DNA roadblocks to packaging. Here using dye-labeled packaging anchored 3.7-kb Y-DNAs or linear DNAs, we demonstrate FRET between the dye-labeled substrates and GFP portal-containing procapsids and between GFP portal and single dye-labeled terminases. We show using FRET-fluorescence correlation spectroscopy that purified T4 gp49 endonuclease VII resolvase can release DNA compression in vitro in prohead portal packaging motor anchored and arrested Y-DNA substrates. In addition, using active terminases labeled at the N- and C-terminal ends with a single dye molecule, we show by FRET distance of the N-terminal GFP-labeled portal protein containing prohead at 6.9 nm from the N terminus and at 5.7 nm from the C terminus of the terminase. Packaging with a C-terminal fluorescent terminase on a GFP portal prohead, FRET shows a reduction in distance to the GFP portal of 0.6 nm in the arrested Y-DNA as compared with linear DNA; the reduction is reversed by resolvase treatment. Conformational changes in both the motor proteins and the DNA substrate itself that are associated with the power stroke of the motor are consistent with a proposed linear motor employing a terminal-to-portal DNA grip-and-release mechanism.  相似文献   

15.
Growth of bacteriophage Mu in Escherichia coli dnaA mutants.   总被引:3,自引:1,他引:2       下载免费PDF全文
In one-step growth experiments we found that bacteriophage Mu grew less efficiently in nonreplicating dnaA mutants than in dnaA+ strains of Escherichia coli. Phage development in dnaA hosts was characterized by latent periods that were 15 to 30 min longer and an average burst size that was reduced by 1.5- to 4-fold. The differences in phage Mu development in dnaA and dnaA+ strains were most pronounced in cells infected at a low multiplicity and became less pronounced in cells infected at a high multiplicity. Many of these differences could be eliminated by allowing the arrested dnaA cells to restart chromosome replication just before infection. In continuous labeling experiments we found that infected dnaA strains incorporated 5 to 40 times more [methyl-3H]thymidine than did uninfected cells, depending on the multiplicity of infection. DNA-DNA hybridization assays showed that greater than 90% of this label was contained in phage Mu DNA sequences and that only small amounts of the label appeared in E. coli sequences. In contrast, substantial amounts of label were incorporated into both host and viral DNA sequences in infected dnaA+ cells. Although our results indicated that phage Mu development is not absolutely dependent on concurrent host chromosomal DNA replication, they did strongly suggest that host replication is necessary for optimal growth of this phage.  相似文献   

16.
Temperate bacteriophage lytic development is intrinsically related to the stress response in particular at the DNA replication and virion maturation steps. Alternatively, temperate phages become lysogenic and integrate their genome into the host chromosome. Under stressful conditions, the prophage resumes a lytic development program, and the phage DNA is excised before being replicated. The KplE1 defective prophage of Escherichia coli K12 constitutes a model system because it is fully competent for integrative as well as excisive recombination and presents an atypical recombination module, which is conserved in various phage genomes. In this work, we identified the host-encoded stress-responsive molecular chaperone DnaJ (Hsp40) as an active participant in KplE1 prophage excision. We first show that the recombination directionality factor TorI of KplE1 specifically interacts with DnaJ. In addition, we found that DnaJ dramatically enhances both TorI binding to its DNA target and excisive recombination in vitro. Remarkably, such stimulatory effect by DnaJ was performed independently of its DnaK chaperone partner and did not require a functional DnaJ J-domain. Taken together, our results underline a novel and unsuspected functional interaction between the generic host stress-regulated chaperone and temperate bacteriophage lysogenic development.  相似文献   

17.
The growth of bacteriophage MB78, a virulent phage of Salmonella typhimurium is extremely sensitive to the chelating agent EDTA. Other chelating agents like EGTA, a specific chelator for Ca2+ and orthophenanthroline which chelates Zn2+ and Fe2+ have no effect. EDTA stops phage MB78 DNA synthesis while synthesis of host DNA and other Salmonella phage DNA are not affected in presence of such low concentrations of EDTA. The present report indicates that some early phage function(s) and most probably the phage DNA synthesis are sensitive to EDTA which is probably due to chelation of Mg2+.  相似文献   

18.
Treatment of bacteriophage T7 with ascorbic acid resulted in the rapid accumulation of single-strand breaks in the DNA with double-strand breaks appearing only after incubation times of 20 min or longer. The single-strand breaks were responsible for a rapid inactivation of the phage as assayed by immediate plating of the phage-bacteria mixture on nutrient agar. Incubation of the phage-bacteria mixture in liquid medium prior to plating allowed a host cell reactivation process to repair the nicks and reactivate the phage. Non-reversible inactivation of the phage was a slower process which could be correlated with the appearance of double-strand breaks in the phage DNA. Host cell reactivation of the phage was also manifested in the phenomena of delayed lysis and delayed appearance of the concatemeric DNA replication intermediate.  相似文献   

19.
The method described above, based on the electrophoretic migration of bacteriophage particles into an agar gel and their subsequent re-suspension in a suitable medium, has the following advantages: It is simple and can be readily carried out on a comparatively large scale by merely inserting additional units between the same electrode cups. It requires but one extraction and the resulting phage suspension is strongly lytic, an average sample being capable of completely lysing susceptible bacteria at a dilution of 10–16. The suspension contains no proteins demonstrable by the biuret, alcohol, xanthoproteic, Millon or Hopkins-Cole reactions and yields but 0.044 mg. N/cc. directly attributable to the phage. Each corpuscle contains no more nitrogen than a single molecule of protein. In addition the method is applicable to determinations of the electric charge carried by biologically active substances of small dimensions, e.g., phage, toxins, and perhaps some viruses. It offers as well a possible means of purification of these substances. The purified bacteriophage obtained by such a procedure or similar ones is relatively unstable. Work now in progress indicates that it does not possess nearly the resistance to chemical agents, drying, etc., that non-purified phage displays. It is suggested that experiments designed to test the therapeutic value of bacteriophage be conducted, when possible, with purified suspensions thereby avoiding any possibility of obscure non-specific reactions due to other constituents of the lysates.  相似文献   

20.
The role of bacteriophage T4 gene 46 in recombination between non-replicating chromosomes was examined. DNA was extracted from Escherichia coli B infected with a mixture of [3H]thymidine-labeled and (13C, 15N)-labeled T4 multiple mutants under non-permissive conditions. The densities of extracted, purified DNAs were determined by neutral cesium sulfate density-gradient centrifugation. When the phage was a double mutant defective in both DNA ligase and DNA polymerase genes, a considerable portion of the 3H label was found at a hybrid density. By contrast, when phage had a third mutation in gene 46, the amount of 3H label found at the hybrid position was greatly reduced. These findings indicate that hybrid molecule formation requires the function of gene 46.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号