首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Zhang  Zhiwei  Yang  Fan  Na  Ren  Zhang  Xiaoluo  Yang  Shuqing  Gao  Jing  Fan  Mingshou  Zhao  Yan  Zhao  Jun 《BMC plant biology》2014,14(1):1-14

Background

The characteristics of pollen tube growth are not constant, but display distinct patterns of growth within the different tissues of the pistil. In the stigma, the growth rate is slow and autotrophic, whereas in the style, it is rapid and heterotrophic. Very little is known about the interactions between these distinct maternal tissues and the traversing pollen tube and the role of this interaction on the observed metabolism. In this work we characterise pollen tube growth in the apple flower and look for differences in glycoprotein epitope localization between two different maternal tissues, the stigma and the style.

Results

While immunocytochemically-detected arabinogalactan proteins were present at high levels in the stigma, they were not detected in the transmitting tissue of the style, where extensins were abundant. Whereas extensins remained at high levels in unpollinated pistils, they were no longer present in the style following pollen tube passage. Similarily, while abundant in unpollinated styles, insoluble polysaccharides such as β-glucans, were depleted in pollinated pistils.

Conclusions

The switch from autotropic to heterotrophic pollen tube growth correlates spatially with a change of glycoprotein epitopes between the stigma and the style. The depletion of extensins and polysaccharides following pollen tube passage in the style suggest a possible contribution to the acceleration of heterotrophic pollen tube growth, which would imply an active contribution of female tissues on prezygotic male–female crosstalk.  相似文献   

2.
3.
4.
5.
Cell-surface-localized leucine-rich-repeat receptorlike kinases(LRR-RLKs) are crucial for plant immunity.Most LRR-RLKs that act as receptors directly recognize ligands via a large extracellular domain(ECD),whereas LRR-RLK that serve as regulators are relatively small and contain fewer LRRs.Here,we identified LRR-RLK regulators using high-throughput tobacco rattle virus(TRV)-based gene silencing in the model plant Nicotiana benthamiana.We used the cell-death phenotype caused by INF1,an oomycete e...  相似文献   

6.
7.
In plants, recognition of small secreted peptides, such as damage/danger‐associated molecular patterns (DAMPs), regulates diverse processes, including stress and immune responses. Here, we identified an SGPS (Ser‐Gly‐Pro‐Ser) motif‐containing peptide, Nicotiana tabacum NtPROPPI, and its two homologs in Nicotiana benthamiana, NbPROPPI1 and NbPROPPI2. Phytophthora parasitica infection and salicylic acid (SA) treatment induced NbPROPPI1/2 expression. Moreover, SignalP predicted that the 89‐amino acid NtPROPPI includes a 24‐amino acid N‐terminal signal peptide and NbPROPPI1/2‐GFP fusion proteins were mainly localized to the periplasm. Transient expression of NbPROPPI1/2 inhibited P. parasitica colonization, and NbPROPPI1/2 knockdown rendered plants more susceptible to P. parasitica. An eight‐amino‐acid segment in the NbPROPPI1 C‐terminus was essential for its immune function and a synthetic 20‐residue peptide, NbPPI1, derived from the C‐terminus of NbPROPPI1 provoked significant immune responses in N. benthamiana. These responses led to enhanced accumulation of reactive oxygen species, activation of mitogen‐activated protein kinases, and up‐regulation of the defense genes Flg22‐induced receptor‐like kinase (FRK) and WRKY DNA‐binding protein 33 (WRKY33). The NbPPI1‐induced defense responses require Brassinosteroid insensitive 1‐associated receptor kinase 1 (BAK1). These results suggest that NbPPI1 functions as a DAMP in N. benthamiana; this novel DAMP provides a potentially useful target for improving plant resistance to Pytophthora pathogens.  相似文献   

8.
Aorta coarctation results in hypertension (HTN) in the arterial tree proximal to stenosis and, as such, provides an ideal model to discern the effects of different levels of blood pressure on the vascular tissue in the same animal. Compelling evidence has emerged supporting the role of oxidative stress as a cause of HTN. However, whether or not HTN (independent of the circulating humoral factors) can cause oxidative stress is less certain. NAD(P)H oxidase isoforms are the main source of reactive oxygen species (ROS) in the vascular tissues. We therefore compared the expressions of NOX-I, gp91phox and the regulatory subunits of the enzyme in the aorta segments residing above and below coarctation in rats with abdominal aorta banding. Rats were studied 4 weeks after aorta banding above the renal arteries or sham operation. Subunits of NAD(P)H oxidase and its NOX-I isoform as well as endothelial NO synthase (eNOS) and nitrotyrosine (footprint of NO oxidation by superoxide) were measured in the aorta segments above and below coarctation. The gp91phox, p47phox, and p67phox subunits of NAD(P)H oxidase, NOX-I isoform, eNOS and nitrotyrosine were markedly increased in the aorta segment above coarctation (hypertensive zone), but were virtually unchanged in the segment below coarctation. Since, excepting blood pressure, all other conditions were constant, the upregulation of NAD(P)H oxidase isoforms and the increased NO oxidation in the aorta segment above, but not below, coarctation prove that HTN, per se, independent of circulating mediators can cause oxidative/nitrosative stress in the arterial wall. These observations suggest that HTN control may represent a specific form of antioxidant therapy for hypertensive disorders.  相似文献   

9.
The mechanisms of induced resistance and susceptibility of potato (Solanum tuberosum L.) tubers to late blight agent (Phytophthora infestans Mont de Bary) were studied using an elicitor chitosan and an immunosuppressor laminarin. It was elucidated that treatment of disks from potato tubers with chitosan resulted in salicyclic acid (SA) accumulation due to activation of benzoate-2-hydroxylase and hydrolysis of SA conjugates. Such SA accumulation in potato tissues inhibited one of the antioxidant enzymes, catalase, inducing an oxidative burst and resistance development. The mechanisms of induced susceptibility to the late blight causal agent were studied using an unspecific immunosuppressor, laminarin, an analogue of natural specific suppressor of potato immune responses, β-1,3,β-1,6-glucan. It was established that the development of immunosuppression in tissues treated with laminarin did not affect the SA level in tissues. However, catalase sensitivity to SA reduced in laminarin-treated tissues, and the enzyme activity increased. In its turn, this might result in the reduced level of hydrogen peroxide in the cells and, as a sequence, in the increased potato susceptibility to late blight.  相似文献   

10.
Although NAD(P)H oxidase-derived superoxide (O(2)(-)) is increased during the development of angiotensin II (ANG II)-dependent hypertension, vascular regulation at the protein level has not been reported. We have shown that four major components of NAD(P)H oxidase are located primarily in the vascular adventitia as a primary source of vascular O(2)(-). Here we compare vascular levels of O(2)(-) and NAD(P)H oxidase in normotensive and ANG II-infused hypertensive mice and show that, after 7 days of ANG II infusion (750 microg. kg(-1). day(-1) ip) in C57B1/6 mice, systolic blood pressure was increased compared with that after sham infusion, concomitant with increased O(2)(-) in the thoracic aorta as measured using lucigenin (25 microM)-enhanced chemiluminescence. Both p67(phox) and gp91(phox) were detectable by Western blotting in aortic homogenates, and we observed increased protein levels of NAD(P)H oxidase subunits. These ANG II-induced increases were normalized by simultaneous treatment with the AT(1) receptor antagonist losartan. Moreover, the primary location of these subunits was the adventitia as detected immunohistochemically. Our results suggest that ANG II-induced increases in O(2)(-) are due to increased adventitial NAD(P)H oxidase activity, brought about by the heightened expression and interaction of its components.  相似文献   

11.
RNA interference (RNAi) was established in Nicotiana benthamiana plants by introducing constructs containing a defective interfering (DI) sequence from Tomato bushy stunt virus (TBSV) in combination with a conserved sense-sequence from the target Grapevine fanleaf virus (GFLV). Silencing in plants was confirmed by Agrobacterium-mediated infiltration of a GFP-sensor containing the GFLV-derived target sequence. The transgene-induced RNAi led to silencing of the GFP-sensor and GFP fluorescence was absent post-infiltration. In plants without GFP fluorescence after infiltration with the GFP-sensor, siRNA specific to GFP and the target virus sequence could not be detected. In contrast, infiltrated leaves of wild type and transgenic plants showing GFP fluorescence after infiltration revealed accumulation of siRNA specific to the sequence of the sensor. Silencing could be inhibited by co-infiltration using a p19 silencing suppressor construct together with the GFP-sensor, which always resulted in bright GFP fluorescence. In parallel, virus resistance of transgenic Nicotiana benthamiana was investigated via challenge inoculation with GFLV. Our results indicate that efficient RNAi in transgenic plants does not necessarily lead to a detectable accumulation of siRNA.  相似文献   

12.
The RXLR cytoplasmic effector AVR3a of Phytophthora infestans confers avirulence on potato plants carrying the R3a gene. Two alleles of Avr3a encode secreted proteins that differ in only three amino acid residues, two of which are in the mature protein. Avirulent isolates carry the Avr3a allele, which encodes AVR3aKI (containing amino acids C19, K80 and I103), whereas virulent isolates express only the virulence allele avr3a, encoding AVR3aEM (S19, E80 and M103). Only the AVR3aKI protein is recognized inside the plant cytoplasm where it triggers R3a-mediated hypersensitivity. Similar to other oomycete avirulence proteins, AVR3aKI carries a signal peptide followed by a conserved motif centered on the consensus RXLR sequence that is functionally similar to a host cell-targeting signal of malaria parasites. The interaction between Avr3a and R3a can be reconstructed by their transient co-expression in Nicotiana benthamiana. We exploited the N. benthamiana experimental system to further characterize the Avr3a-R3a interaction. R3a activation by AVR3aKI is dependent on the ubiquitin ligase-associated protein SGT1 and heat-shock protein HSP90. The AVR3aKI and AVR3aEM proteins are equally stable in planta, suggesting that the difference in R3a-mediated death cannot be attributed to AVR3aEM protein instability. AVR3aKI is able to suppress cell death induced by the elicitin INF1 of P. infestans, suggesting a possible virulence function for this protein. Structure-function experiments indicated that the 75-amino acid C-terminal half of AVR3aKI, which excludes the RXLR region, is sufficient for avirulence and suppression functions, consistent with the view that the N-terminal region of AVR3aKI and other RXLR effectors is involved in secretion and targeting but is not required for effector activity. We also found that both polymorphic amino acids, K80 and I103, of mature AVR3a contribute to the effector functions.  相似文献   

13.
The most significant threat to potato production worldwide is the late blight disease, which is caused by the oomycete pathogen Phytophthora infestans. Based on previous cDNA microarrays and cDNA-amplified fragment length polymorphism analysis, 63 candidate genes that are expected to contribute to developing a durable resistance to late blight were selected for further functional analysis. We performed virus-induced gene silencing (VIGS) to these candidate genes on both Nicotiana benthamiana and potato, subsequently inoculated detached leaves and assessed the resistance level. Ten genes decreased the resistance to P. infestans after VIGS treatment. Among those, a lipoxygenase (LOX; EC 1.13.11.12) and a suberization-associated anionic peroxidase affected the resistance in both N. benthamiana and potato. Our results identify genes that may play a role in quantitative resistance mechanisms to late blight.  相似文献   

14.
AGD2-LIKE DEFENCE RESPONSE PROTEIN 1 (ALD1) triggers plant defence against bacterial and fungal pathogens by regulating the salicylic acid (SA) pathway and an unknown SA-independent pathway. We now show that Nicotiana benthamiana ALD1 is involved in defence against a virus and that the ethylene pathway also participates in ALD1-mediated resistance. NbALD1 was up-regulated in plants infected with turnip mosaic virus (TuMV). Silencing of NbALD1 facilitated TuMV infection, while overexpression of NbALD1 or exogenous application of pipecolic acid (Pip), the downstream product of ALD1, enhanced resistance to TuMV. The SA content was lower in NbALD1-silenced plants and higher where NbALD1 was overexpressed or following Pip treatments. SA mediated resistance to TuMV and was required for NbALD1-mediated resistance. However, on NahG plants (in which SA cannot accumulate), Pip treatment still alleviated susceptibility to TuMV, further demonstrating the presence of an SA-independent resistance pathway. The ethylene precursor, 1-aminocyclopropanecarboxylic acid (ACC), accumulated in NbALD1-silenced plants but was reduced in plants overexpressing NbALD1 or treated with Pip. Silencing of ACS1, a key gene in the ethylene pathway, alleviated the susceptibility of NbALD1-silenced plants to TuMV, while exogenous application of ACC compromised the resistance of Pip-treated or NbALD1 transgenic plants. The results indicate that NbALD1 mediates resistance to TuMV by positively regulating the resistant SA pathway and negatively regulating the susceptible ethylene pathway.  相似文献   

15.
Strains of Phytophthora infestans of the same race (P4) isolated from a range of R0 potato varieties differed markedly in their rate of growth on agar but differences in growth rate were not related to variety of origin. Two isolates from each of the varieties Duke of York, Majestic and Arran Consul were grown for six successive subcultures on tubers of these three varieties. The six isolates differed in aggressiveness as shown by their growth on individual varieties. There was a marked difference in growth rate between alternate subcultures which is attributed to the use of too long an incubation period. Analysis of the data for subcultures 1, 3 and 5 revealed a significant interaction between isolates and varieties which reflected the enhanced growth of five of the isolates on the variety from which they had been obtained. Serial subculture on potato tubers of the same variety had no general or specific effect on the aggressiveness of the isolates. It is concluded that strains of P. infestans of the same race may be differentially adapted to the variety on which they are growing in the field. Differential interactions between pathogen biotypes and non-immune hosts are considered to be widespread in host-pathogen systems.  相似文献   

16.
汪晓雯  国立耘 《生物工程学报》2016,32(11):1564-1575
在真核生物中,DNA缠绕在组蛋白上形成核小体,一个组蛋白分子包括H2A、H2B、H3和H4各2个核心组蛋白亚基。在这4种核心组蛋白中,H2A富含多样化,且在细胞的生物途径中起重要作用的变异体,因此,H2A家族一直是研究热点。致病疫霉是重要的病原菌也是研究卵菌的模式物种之一,目前关于卵菌表观遗传的研究还未见报道。本研究针对致病疫霉组蛋白H2A变异体,利用基因组信息和基因芯片数据,通过序列比对、系统发育分析以及基因表达水平检测,发现在致病疫霉基因组中存在组蛋白H2A变异体H2A.X.1、H2A.X.2和H2A.Z,它们在不同生长发育阶段和侵染过程呈现特异的表达谱。研究结果为进一步研究致病疫霉表观遗传机制奠定了基础。  相似文献   

17.
Transgenic Nicotiana benthamiana and N. clevelandii plants expressing the coat protein of Plum Pox Virus under the control of the 35S promoter from Cauliflower Mosaic Virus were engineered by Agrobacterium tumefaciens mediated transformation. The phenomenon of virus resistance was observed at different levels when transgenic plants, expressing the coat protein and control plants were compared after challenge infection with Plum Pox Virus. N. clevelandii coat protein transgenic plants circumvent virus accumulation. After an initial increase in virus titer similar to the control plants, some coat protein expressing plants showed a reduced accumulation of virus and inhibition of the systemic spread, characterized by decrease of the virus titer and formation of new symptomless leaves. In other N. clevelandii coat protein expressing plants virus accumulation was inhibited and disease symptoms never appeared. N. benthamiana coat protein expressing plants were also protected. After a temporary virus accumulation, virus titer decreased without the appearance of symptoms with the exception of a few plants, which showed a delay of thirty days in the development of symptoms post challenge infection.Abbreviations PPV Plum Pox Virus - CP coat protein - CaMV Cauliflower Mosaic Virus - CP+ coat protein expressing plant - CP– control plant = non coat protein expressing plant - TMV Tobacco Mosaic Virus - NPTII neomycin phosphotransferaseII - IBA indole-3-butyric acid - BAP 6-benzylaminopurine; - MS Murashige Skoog - ELISA enzyme linked immunosorbent assay  相似文献   

18.
19.
目的:建立小胶质细胞缺氧再复氧损伤模型,观察产生ROS的NADPH氧化酶的重要功能亚基gp91phox的表达变化及清开灵的干预作用,丰富清开灵基于解毒通络法以祛除内毒恢复脉络的作用内涵。方法:体外培养小鼠胶质细胞BV2,细胞分为正常组、模型组和清开灵高、中、低剂量组,在1%O2三气培养箱中缺氧12小时再复氧12小时模拟缺血再灌注损伤,正常对照组在培养箱中培养24小时,实时荧光定量PCR法检测gp91phoxmRNA的转录水平,Western blot法检测gp91phox蛋白表达。结果:缺氧再复氧损伤后,模型组gp91phox基因转录水平和蛋白表达提高(P0.05);与模型组比较,清开灵低、中、高剂量组都有明显改善作用,其中低剂量(0.0625%)对基因转录降低更明显,高剂量组(0.25%)对gp91phox蛋白表达的抑制更显著,具有统计学意义(P0.05)。结论:清开灵可通过降低缺氧再复氧后小胶质细胞gp91phox的表达,减少活性氧的产生而抑制脑缺血损伤氧化应激反应。  相似文献   

20.

Background

The filamentous oomycete plant pathogen Phytophthora infestans causes late blight, an economically important disease, on members of the nightshade family (Solanaceae), such as the crop plants potato and tomato. The related plant Nicotiana benthamiana is a model system to study plant-pathogen interactions, and the susceptibility of N. benthamiana to Phytophthora species varies from susceptible to resistant. Little is known about the extent to which plant basal immunity, mediated by membrane receptors that recognise conserved pathogen-associated molecular patterns (PAMPs), contributes to P. infestans resistance.

Principal Findings

We found that different species of Phytophthora have varying degrees of virulence on N. benthamiana ranging from avirulence (incompatible interaction) to moderate virulence through to full aggressiveness. The leucine-rich repeat receptor-like kinase (LRR-RLK) BAK1/SERK3 is a major modulator of PAMP-triggered immunity (PTI) in Arabidopsis thaliana and N. benthamiana. We cloned two NbSerk3 homologs, NbSerk3A and NbSerk3B, from N. benthamiana based on sequence similarity to the A. thaliana gene. N. benthamiana plants silenced for NbSerk3 showed markedly enhanced susceptibility to P. infestans infection but were not altered in resistance to Phytophthora mirabilis, a sister species of P. infestans that specializes on a different host plant. Furthermore, silencing of NbSerk3 reduced the cell death response triggered by the INF1, a secreted P. infestans protein with features of PAMPs.

Conclusions/Significance

We demonstrated that N. benthamiana NbSERK3 significantly contributes to resistance to P. infestans and regulates the immune responses triggered by the P. infestans PAMP protein INF1. In the future, the identification of novel surface receptors that associate with NbSERK3A and/or NbSERK3B should lead to the identification of new receptors that mediate recognition of oomycete PAMPs, such as INF1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号