首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microsomal prostaglandin E2 synthase (mPGES-1) has been identified recently as a novel target for treating pain and inflammation. The aim of this study is to understand the binding affinities of reported inhibitors for mPGES-1 and further to design potential new mPGES-1 inhibitors. 3D-QSAR-CoMFA (comparative molecular field analysis) and CoMSIA (comparative molecular similarity indices analysis) - techniques were employed on a series of indole derivatives that act as selective mPGES-1 inhibitors. The lowest energy conformer of the most active compound obtained from systematic conformational search was used as a template for the alignment of 32 compounds. The models obtained were used to predict the activities of the test set of eight compounds, and the predicted values were in good agreement with the experimental results. The 3D-QSAR models derived from the training set of 24 compounds were all statistically significant (CoMFA; q 2 = 0.89, r 2 = 0.95, , and CoMSIA; q 2 = 0.84, r 2 = 0.93, , ). Contour plots generated for the CoMFA and CoMSIA models reveal useful clues for improving the activity of mPGES-1 inhibitors. In particular, substitutions of an electronegative fluorine atom or a bulky hydrophilic phenoxy group at the meta or para positions of the biphenyl rings might improve inhibitory activity. A plausible binding mode between the ligands and mPGES-1 is also proposed.  相似文献   

2.
He S  Wu Y  Yu D  Lai L 《The Biochemical journal》2011,440(1):13-21
mPGES-1 (microsomal prostaglandin E synthase-1) is a newly recognized target for the treatment of inflammatory diseases. As the terminal enzyme of the prostaglandin production pathway, mPGES-1 inhibition may have a low risk of side effects. Inhibitors of mPGES-1 have attracted considerable attention as next-generation anti-inflammatory drugs. However, as mPGES-1 is a membrane protein, its enzymatic mechanism remains to be disclosed fully. We used MD (molecular dynamics) simulations, mutation analysis, hybrid experiments and co-IP (co-immunoprecipitation) to investigate the conformation transitions of mPGES-1 during catalysis. mPGES-1 forms a homotrimer with three substrate-binding sites (pockets). In the MD simulation, only one substrate molecule could bind to one of the pockets and form the active complex, suggesting that the mPGES-1 trimer has only one pocket active at any given time. This one-third-of-the-sites reactivity enzyme mechanism was verified further by hybridization experiments and MD simulations. The results of the present study revealed for the first time a novel one-third-of-the-sites reactivity enzyme mechanism for mPGES-1, and the unique substrate-binding pocket in our model constituted an active conformation that was suitable for further enzymatic mechanism study and structural-based drug design against mPGES-1.  相似文献   

3.
Prostaglandin E2 (PGE2) plays an important role in the normal physiology of many organ systems. Increased levels of this lipid mediator are associated with many disease states, and it potently regulates inflammatory responses. Three enzymes capable of in vitro synthesis of PGE2 from the cyclooxygenase metabolite PGH2 have been described. Here, we examine the contribution of one of these enzymes to PGE2 production, mPges-2, which encodes microsomal prostaglandin synthase-2 (mPGES-2), by generating mice homozygous for the null allele of this gene. Loss of mPges-2 expression did not result in a measurable decrease in PGE2 levels in any tissue or cell type examined from healthy mice. Taken together, analysis of the mPGES-2 deficient mouse lines does not substantiate the contention that mPGES-2 is a PGE2 synthase.  相似文献   

4.

Introduction  

This study aimed to investigate whether hydroxynonenal (HNE) depletion is responsible for the switch from cyclooxygenase-2 (COX-2) and microsomal prostaglandin E2 synthase-1 (mPGES-1) to 5-lipoxygenase-activating protein (FLAP) and 5-lipoxygenase (5-LOX).  相似文献   

5.
Prostaglandin E2 (PGE2) is the major vasodilator prostanoid of the mammalian ductus arteriosus (DA). In the present study we analyzed the response of isolated DA rings from 15-, 19- and 21-day-old chicken embryos to PGE2 and other vascular smooth muscle relaxing agents acting through the cyclic AMP signaling pathway. PGE2 exhibited a relaxant response in the 15-day DA, but not in the 19- and 21-day DA. Moreover, high concentrations of PGE2 (≥3 μM in 15-day and ≥1 μM in 19-day and 21-day DA) induced contraction of the chicken DA. The presence of the TP receptor antagonist SQ29,548, unmasked a relaxant effect of PGE2 in the 19- and 21-day DA and increased the relaxation induced by PGE2 in the 15-day DA. The presence of the EP receptor antagonist AH6809 abolished PGE2-mediated relaxation. The relaxant responses induced by PGE2 and the β-adrenoceptor agonist isoproterenol, but not those elicited by the adenylate cyclase activator forskolin or the phosphodiesterase 3 inhibitor milrinone, decreased with maturation. High oxygen concentrations (95%) decreased the relaxation to PGE2. The relaxing potency and efficacy of isoproterenol and milrinone were higher in the pulmonary than in the aortic side of the DA, whereas no regional differences were found in the response to PGE2. We conclude that, in contrast to the mammalian situation, PGE2 is a weak relaxant agent of the chicken DA and, with advancing incubation, it even stimulates TP vasoconstrictive receptors.  相似文献   

6.
To better define the role of the various prostanoid synthases in the adjuvant-induced arthritis (AIA) model, we have determined the temporal expression of the inducible PGE synthase (mPGES-1), mPGES-2, the cytosolic PGES (cPGES/p23), and prostacyclin synthase, and compared with that of cyclooxygenase-1 (COX-1) and COX-2. The profile of induction of mPGES-1 (50- to 80-fold) in the primary paw was similar to that of COX-2 by both RNA and protein analysis. Quantitative PCR analysis indicated that induction of mPGES-1 at day 15 was within 2-fold that of COX-2. Increased PGES activity was measurable in membrane preparations of inflamed paws, and the activity was inhibitable by MK-886 to >or=90% with a potency similar to that of recombinant rat mPGES-1 (IC(50) = 2.4 microM). The RNA of the newly described mPGES-2 decreased by 2- to 3-fold in primary paws between days 1 and 15 postadjuvant. The cPGES/p23 and COX-1 were induced during AIA, but at much lower levels (2- to 6-fold) than mPGES-1, with the peak of cPGES/p23 expression occurring later than that of COX-2 and PGE(2) production. Prostacyclin (measured as 6-keto-PGF(1alpha)) was transiently elevated on day 1, and prostacyclin synthase was down-regulated at the RNA level after day 3, suggesting a diminished role of prostacyclin during the maintenance of chronic inflammation in the rat AIA. These results show that mPGES-1 is up-regulated throughout the development of AIA and suggest that it plays a major role in the elevated production of PGE(2) in this model.  相似文献   

7.
THE prostaglandins (PG) are possible mediators of inflammation. Prostaglandins E and F are present in inflammatory exudates1–3 and could be related to the increase of collagen biosynthesis associated with inflammation. Vane and his colleagues4–6 recently observed that indomethacin, aspirin and sodium salicylate potently block the biosynthesis of prostaglandins. These anti-inflammatory drugs are also inhibitors of collagen biosynthesis7,8. Morphological studies9 have revealed increased deposition of collagen or collagen-related elements in organ cultures of chick embryo skin containing prostaglandins E1 and B1. We report here results which indicate stimulation of collagen biosynthesis by prostaglandins E1 and F evaluated by hydroxylation of proline and lysine and glycosylation of hydroxylysine in 10 day chick embryo tibiae.  相似文献   

8.

Introduction  

Prostaglandin D synthase (PGDS) is responsible for the biosynthesis of PGD and J series, which have been shown to exhibit anti-inflammatory and anticatabolic effects. Two isoforms have been identified: hematopoietic- and lipocalin-type PGDS (H-PGDS and L-PGDS, respectively). The aims of this study were to investigate the expressions of H-PGDS and L-PGDS in cartilage from healthy donors and from patients with osteoarthritis (OA) and to characterize their regulation by interleukin-1-beta (IL-1β) in cultured OA chondrocytes.  相似文献   

9.
The COX-2 product prostaglandin E2 (PGE2) contributes to the high metastatic capacity of breast tumors. Our published data indicate that inhibiting either PGE2 production or PGE2-mediated signaling through the PGE2 receptor EP4 reduces metastasis by a mechanism that requires natural killer (NK) cells. It is known that NK cell function is compromised by PGE2, but very little is known about the mechanism by which PGE2 affects NK effector activity. We now report the direct effects of PGE2 on the NK cell. Endogenous murine splenic NK cells express all four PGE2 receptors (EP1-4). We examined the role of EP receptors in three NK cell functions: migration, cytotoxicity, and cytokine release. Like PGE2, the EP4 agonist PGE1-OH blocked NK cell migration to FBS and to four chemokines (ITAC, MIP-1α, SDF-1α, and CCL21). The EP2 agonist, Butaprost, inhibited migration to specific chemokines but not in response to FBS. In contrast to the inhibitory actions of PGE2, the EP1/EP3 agonist Sulprostone increased migration. Unlike the opposing effects of EP4 vs. EP1/EP3 on migration, agonists of each EP receptor were uniformly inhibiting to NK-mediated cytotoxicity. The EP4 agonist, PGE1-OH, inhibited IFNγ production from NK cells. Agonists for EP1, EP2, and EP3 were not as effective at inhibiting IFNγ. Agonists of EP1, EP2, and EP4 all inhibited TNFα; EP4 agonists were the most potent. Thus, the EP4 receptor consistently contributed to loss of function. These results, taken together, support a mechanism whereby inhibiting PGE2 production or preventing signaling through the EP4 receptor may prevent suppression of NK functions that are critical to the control of breast cancer metastasis.  相似文献   

10.
The bactericide colicin E2 is believed to act by binding to surface receptors and thereby initiating the movement of periplasmic endonuclease I to the membrane or cytoplasm, with subsequent DNA degradation. Escherichia coli cells are found to become resistant to colicin E2 by losing their endonuclease I through mutation or osmotic shock treatment.  相似文献   

11.
Evidence that polymerase I is the essential enzyme for DNA replication in E. coli is presented. A number of mechanisms for DNA duplication are suggested by the data.  相似文献   

12.
Microsomal prostaglandin E(2) synthase-1 (mPGES-1) catalyzes the formation of prostaglandin E(2) (PGE(2)) from the endoperoxide prostaglandin H( 2) (PGH(2)). Expression of this enzyme is induced during the inflammatory response, and mouse knockout experiments suggest it may be an attractive target for antiarthritic therapies. Assaying the activity of this enzyme in vitro is challenging because of the unstable nature of the PGH( 2) substrate. Here, the authors present an mPGES-1 activity assay suitable for characterization of enzyme preparations and for determining the potency of inhibitor compounds. This plate-based competition assay uses homogenous time-resolved fluorescence to measure PGE(2) produced by the enzyme. The assay is insensitive to DMSO concentration up to 10% and does not require extensive washes after the initial enzyme reaction is concluded, making it a simple and convenient way to assess mPGES-1 inhibition.  相似文献   

13.
MUCH of the pharmacology of the prostaglandins (PG) could be interpreted in terms of their facilitation of the movement of calcium ions into or out of biological membranes1. We have therefore investigated this possibility, taking advantage of the configurational changes and attendant changes in light-scattering which result from the binding of calcium ions to the mitochondrial inner membrane2. Preliminary findings, which we report here, provide evidence of a marked facilitation of non-energized binding of calcium to mitochondrial membranes when in the presence of PGE1 at concentrations of the order of 10?7 M.  相似文献   

14.
15.
Here we describe the SAR of a series of potent and selective mPGES-1 inhibitors based on an oxicam template. Compound 13j demonstrated low nanomolar mPGES-1 inhibition in an enzyme assay. In addition, it displayed PGE2 inhibition in a cell-based assay (0.42 μM) and had over 238-fold selectivity for mPGES-1 over COX-2 and over 200-fold selectivity for mPGES-1 over 6-keto PGF.  相似文献   

16.
17.
AimsNonsteroidal anti-inflammatory drugs are a therapeutic modality for chronic cancer pain arising from bone metastases. Chronic administration of a cyclooxygenase (COX)-2 inhibitor is effective to bone cancer-related pain. However, adverse cardiovascular effects have limited COX-2 inhibitor therapy, and elucidation of better targets for blocking prostaglandin (PG) biosynthesis is necessary. Microsomal PGE synthase-1 (mPGES-1) is an inducible enzyme that catalyzes isomerization of the endoperoxide PGH2 to PGE2. To investigate the validity of mPGES-1 as a therapeutic target, we evaluated bone cancer pain-related behaviors in mPGES-1 knockout (PGES-1?/?) mice.Main methodsLewis lung carcinoma cells (LLCCs) were injected into the intramedullary space of the femur of wild-type (WT) and PGES-1?/? mice. Pain-related behaviors were evaluated.Key findingsPGES-1?/? mice exhibited reduced tumor growth in bone marrow compared to WT. The expression of pro-calcitonin gene-related peptide (CGPR) in the dorsal root ganglia of L1–5 was significantly higher in WT mice at day 14, whereas it was unchanged in mPGES-1 mice. In the observation of pain-related behaviors, mPGES-1?/? mice exhibited significantly fewer spontaneous flinches and their onset was several days later than WT. The appearance of other pain-related behaviors in mPGES-1?/? mice was also delayed as compared to WT. LLCC-injected WT mice treated with a COX-2 inhibitor, celecoxib, exhibited similar temporal changes to mPGES1?/?.SignificanceThe present results suggest that mPGES-1 plays a crucial role in the enhancement of bone cancer growth and bone cancer pain, and that inhibition of mPGES-1 may have clinical utility in the management of bone cancer pain.  相似文献   

18.
Microsomal prostaglandin synthetase-1 (mPGES-1) is an inducible terminal enzyme required for prostaglandin E2 (PGE2) biosynthesis. In this study, we examined the role of mPGES-1 in the inflammation and demyelination observed in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). We induced EAE with myelin oligodendrocyte glycoprotein35–55 peptide in mPGES-1-deficient (mPGES-1−/−) and wild-type (WT) mice. First, we examined the histopathology in the early and late phases of EAE progression. Next, we measured the concentration of PGE2 in the spinal cord and investigated the expression of mPGES-1 using immunohistochemistry. In addition, we examined the progression of the severity of EAE using an EAE score to investigate a correlation between pathological features and paralysis. In this paper, we demonstrate that WT mice showed extensive inflammation and demyelination, whereas mPGES-1−/− mice exhibited significantly smaller and more localized changes in the perivascular area. The mPGES-1 protein was induced in vascular endothelial cells and microglia around inflammatory foci, and PGE2 production was increased in WT mice but not mPGES-1−/− mice. Furthermore, mPGES-1−/− mice showed a significant reduction in the maximum EAE score and improved locomotor activity. These results suggest that central PGE2 derived from non-neuronal mPGES-1 aggravates the disruption of the vessel structure, leading to the spread of inflammation and local demyelination in the spinal cord, which corresponds to the symptoms of EAE. The inhibition of mPGES-1 may be useful for the treatment of human MS.  相似文献   

19.
A density functional theory (DFT) study of cct-As, ccc, and cct-CO isomers of the ruthenium dihydride complex RuH2(CO)2(AsMe2Ph)2 is reported (see Scheme for the labeling isomer 34 structures of RuH2(CO)2(AsMe2Ph)2). Complex geometries and relative energies of different isomers have been calculated with both B3LYP and M06-2X functionals. The results show that the B3LYP calculated Boltzmann populations of cct-As, ccc, and cct-CO isomers are 65.5, 34.2, and 0.3%, respectively. These are in better agreement with the experimental data than those calculated at the M06-2X level. However, the calculations of 1H NMR chemical shifts were found to be better described with M06-2X than with B3LYP or with HF level of theories. In addition, a transition state between the two most stable isomers was determined through DFT/(B3LYP or M06-2X) calculations.
Graphical Abstract Scheme: Labeling structure of RuH2(CO)2(AsMe2Ph)2
  相似文献   

20.
Microsomal prostaglandin E2 synthase (mPGES)-1 is an inducible protein recently shown to be an important enzyme in inflammatory prostaglandin E2 (PGE2) production in some peripheral inflammatory lesions. However, in inflammatory sites in the brain, the induction of mPGES-1 is poorly understood. In this study, we demonstrated the expression of mPGES-1 in the brain parenchyma in a lipopolysaccharide (LPS)-induced inflammation model. A local injection of LPS into the rat substantia nigra led to the induction of mPGES-1 in activated microglia. In neuron-glial mixed cultures, mPGES-1 was co-induced with cyclooxygenase-2 (COX-2) specifically in microglia, but not in astrocytes, oligodendrocytes or neurons. In microglia-enriched cultures, the induction of mPGES-1, the activity of PGES and the production of PGE2 were preceded by the induction of mPGES-1 mRNA and almost completely inhibited by the synthetic glucocorticoid dexamethasone. The induction of mPGES-1 and production of PGE2 were also either attenuated or absent in microglia treated with mPGES-1 antisense oligonucleotide or microglia from mPGES-1 knockout (KO) mice, respectively, suggesting the necessity of mPGES-1 for microglial PGE2 production. These results suggest that the activation of microglia contributes to PGE2 production through the concerted de novo synthesis of mPGES-1 and COX-2 at sites of inflammation of the brain parenchyma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号