首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mouse c-abl locus: molecular cloning and characterization   总被引:44,自引:0,他引:44  
J Y Wang  F Ledley  S Goff  R Lee  Y Groner  D Baltimore 《Cell》1984,36(2):349-356
The mouse c-abl gene, part of the sequence of which was captured in Moloney murine leukemia virus to generate the transforming gene (v-abl) of the Abelson murine leukemia virus, has been isolated and characterized. The c-abl locus spans 40 kb in the mouse genome with the v-abl homologies distributed in no less than ten clusters along 25 kb of the cloned DNA. Partial sequence of the v-abl homologous regions indicates that v-abl derived from c-abl mainly by splicing of multiple exons of the c-abl gene. The c-abl sequences can be subdivided into two regions: a tyrosine kinase coding sequence distributed among eight small clusters on the 5' end of the gene and a C-terminal portion consisting of one small and one large cluster, which are needed neither for the tyrosine kinase activity nor for the transforming ability of v-abl. Apparent exon/intron boundaries in the homologous kinase-coding regions of c-abl and c-src are at different locations.  相似文献   

2.
J B Konopka  S M Watanabe  O N Witte 《Cell》1984,37(3):1035-1042
The v-abl protein is known to be a tyrosine-specific protein kinase. However, its normal cellular homolog, c-abl P150, is not detectably phosphorylated on tyrosine in vivo or in vitro. The lack of associated tyrosine kinase activity for the c-abl protein seems paradoxical since it is the c-abl-derived sequences of the v-abl protein that encode the kinase activity. We have detected an altered human c-abl protein (P210) with associated tyrosine kinase activity in the K562 leukemia cell line. K562 cells are known to have a 9:22 chromosomal translocation involving the c-abl locus and have amplified the c-able gene 4 to 8 fold. The altered P210 human c-abl is serologically and structurally related to the normal c-abl protein. A structural alteration of the human c-abl protein. K562 cells may have unmasked its associated tyrosine kinase activity. This altered c-abl protein may have important implications for a mechanism of activation of this oncogene.  相似文献   

3.
Several biochemical properties of a 43 kDa v-abl-encoded tyrosine-specific protein kinase (p43v-abl) expressed in Escherichia coli were examined. p43v-abl is a fragment of a 60 kDa v-abl-encoded precursor, p60v-abl, and could be generated by limited proteolysis of a purified p60v-abl with trypsin. Tryptic cleavage of p60v-abl was prevented in the presence of ATP. These results suggest that the catalytic kinase domain of v-abl-derived protein can be separated from other (regulatory) domains by limited proteolysis. p43v-abl readily phosphorylated tyrosine residues on several different protein and peptide substrates, including peptides containing only two amino acid residues. However, the local sequence of the tyrosine-containing peptide substrate significantly affected its rate of phosphorylation. Thus the primary structure and local conformation at the tyrosine acceptor site can play an important role in determining the substrate specificity of v-abl-derived kinase. Phosphorylation by p43v-abl requires Mn2+, Co2+ or Mg2+ and exhibits a strong preference for ATP as phosphate donor. Analogues of ATP and the thiol-reactive reagent N-ethylmaleimide inhibited p43v-abl kinase activity. Purified p43v-abl is intrinsically thermolabile (t1/2 = 5 min at 40 degrees C) and phosphorylates glycerol inefficiently (Km = 1.4 M).  相似文献   

4.
The v-abl protein of Abelson murine leukemia virus is a tyrosine-specific kinase. Its normal cellular homolog, murine c-abl, does not possess detectable tyrosine kinase activity in vitro. Previously, we have detected tyrosine kinase activity in vitro for an altered c-abl gene product (c-abl P210) in the K562 human chronic myelogenous leukemia cell line. The expression of this variant c-abl gene product correlates with chromosomal translocation and amplification of the c-abl gene in K562 cells. Like v-abl, c-abl P210 is a fusion protein containing non-abl sequences near the amino terminus of c-abl. We compared the in vitro tyrosine kinase activity of c-abl P210 with that of wild-type murine v-abl. The remarkable similarities of these two proteins with respect to cis-acting autophosphorylation, trans-acting phosphorylation of exogenous substrates, and kinase inhibition, using site-directed abl-specific antisera, suggested that c-abl P210 could function similarly to v-abl in vivo. In addition, c-abl P210 possessed an associated serine kinase activity in immunoprecipitates. The serine kinase activity was not inhibited by site-directed, abl-specific antisera that inhibit the tyrosine kinase activity, suggesting that the serine kinase activity is not an intrinsic property of c-abl P210. Thus, the activation of the c-abl gene in a human leukemia cell line may have functional consequences analogous to activation of the c-abl gene in Abelson murine leukemia virus.  相似文献   

5.
The v-abl transforming protein P160v-abl and the P210c-abl gene product of the translocated c-abl gene in Philadelphia chromosome-positive chronic myelogenous leukemia cells have tyrosine-specific protein kinase activity. Under similar assay conditions the normal c-abl gene products, murine P150c-abl and human P145c-abl, lacked detectable kinase activity. Reaction conditions were modified to identify conditions which would permit the detection of c-abl tyrosine kinase activity. It was found that the Formalin-fixed Staphylococcus aureus formerly used for immunoprecipitation inhibits in vitro abl kinase activity. In addition, the sodium dodecyl sulfate and deoxycholate detergents formerly used in the cell lysis buffer were found to decrease recovered abl kinase activity. The discovery of assay conditions for c-abl kinase activity now makes it possible to compare P150c-abl and P145c-abl kinase activity with the altered abl proteins P160v-abl and P210c-abl. Although all of the abl proteins have in vitro tyrosine kinase activity, they differ in the way they utilize themselves as substrates in vitro. Comparison of in vitro and in vivo tyrosine phosphorylation sites of the abl proteins suggests that they function differently in vivo. The development of c-abl kinase assay conditions should be useful in elucidating c-abl function.  相似文献   

6.
Abelson murine leukemia virus encodes a transforming protein which contains tyrosine kinase activity and is phosphorylated in vivo and in vitro. We found that P160 and P160-derived virus strains expressed an additional, altered v-abl protein which could not be phosphorylated. The altered v-abl protein (L-v-abl) differed from the phosphorylated form (K-v-abl) in that it was glycosylated and localized exclusively to the membrane fraction. Tunicamycin inhibition of N-linked carbohydrate addition did not restore phosphorylation. It did, however, reveal that L-v-abl had additional sequences relative to K-v-abl. The coding sequences required for this region and for the expression of L-v-abl were identified by replacing sequences in the P120 virus genome, which did not express L-v-abl, with sequences from the P160 virus genome. The necessary sequences were localized to the Moloney murine leukemia virus-derived gag gene. Comparison between the in vitro altered P120 and wild-type P120 virus strains indicated that expression of L-v-abl did not increase the efficiency of lymphoid transformation. Although the biological role of L-v-abl is not clear, our analyses have revealed that a specific amino terminal gag sequence can prevent v-abl from acting as a kinase substrate and can alter the cellular localization and modification of v-abl. These properties distinguish L-v-abl from previously reported v-abl proteins.  相似文献   

7.
Proteins encoded by oncogenes such as v-fps/fes, v-src, v-yes, v-abl, and v-fgr are cytoplasmic protein tyrosine kinases which, unlike transmembrane receptors, are localized to the inside of the cell. These proteins possess two contiguous regions of sequence identity: a C-terminal catalytic domain of 260 residues with homology to other tyrosine-specific and serine-threonine-specific protein kinases, and a unique domain of approximately 100 residues which is located N terminal to the kinase region and is absent from kinases that span the plasma membrane. In-frame linker insertion mutations in Fujinami avian sarcoma virus which introduced dipeptide insertions into the most stringently conserved segment of this N-terminal domain in P130gag-fps impaired the ability of Fujinami avian sarcoma virus to transform rat-2 cells. The P130gag-fps proteins encoded by these transformation-defective mutants were deficient in protein-tyrosine kinase activity in rat cells. However v-fps polypeptides derived from the mutant Fujinami avian sarcoma virus genomes and expressed in Escherichia coli as trpE-v-fps fusion proteins displayed essentially wild-type enzymatic activity, even though they contained the mutated sites. Deletion of the N-terminal domain from wild-type and mutant v-fps bacterial proteins had little effect on autophosphorylating activity. The conserved N-terminal domain of P130gag-fps is therefore not required for catalytic activity, but can profoundly influence the adjacent kinase region. The presence of this noncatalytic domain in all known cytoplasmic tyrosine kinases of higher and lower eucaryotes argues for an important biological function. The relative inactivity of the mutant proteins in rat-2 cells compared with bacteria suggests that the noncatalytic domain may direct specific interactions of the enzymatic region with cellular components that regulate or mediate tyrosine kinase function.  相似文献   

8.
The receptors for polypeptide growth factors and proteins coded by oncogenes of the src family are endowed with protein kinase activity and share the uncommon property of autophosphorylating at tyrosine residues. It is unclear whether the tyrosine kinase activity is also directed towards other targets of physiological significance. In this work, phosphotyrosine antibodies were used to detect, by Western blots and immunoprecipitation, proteins phosphorylated at tyrosine in fibroblasts either stimulated by growth factors (PDGF and EGF) or transformed by oncogene-coded tyrosine kinases. In stimulated cells the antibodies detected the autophosphorylated receptors, but only trace amounts of other proteins phosphorylated at tyrosine. In fibroblasts transformed by retroviral oncogenes (v-src, v-abl, v-fps or v-fes) proteins other than the corresponding oncogene-coded kinase, were found. A p70 was found to be heavily phosphorylated in fibroblasts transformed by v-src, v-fes and v-fps. A p130 and a p36 were found in cells transformed by v-src and v-abl. A unique p70 was phosphorylated in v-abl-transformed fibroblasts. These proteins were also phosphorylated in vitro in an immunocomplex kinase reaction. This reaction was blocked by the specific kinase inhibitors. These data strongly suggest that tyrosine kinases phosphorylate protein targets other than themselves. These targets are barely detectable in normal cells stimulated by growth factors, where the kinase activity is triggered rapidly and transiently. By contrast, a number of intracellular proteins phosphorylated at tyrosine accumulate in cells transformed by v-onc-coded kinases, endowed with constitutive and non-regulated enzymatic activity.  相似文献   

9.
Antibodies against phosphotyrosine are a powerful tool with which to identify proteins phosphorylated on tyrosine residues, such as viral oncogene-encoded transforming proteins and their cellular protein substrates. Probed on human leukemia cell lines, phosphotyrosine antibodies recognized a 210,000-molecular-weight protein (p210) in K562 cells, a cell line derived from a Philadelphia (Ph)'-positive chronic myelogenous leukemia (CML), but recognized no protein in control Ph'-negative non-CML leukemia cells. The p210 protein was also recognized by antisera against v-abl-encoded polypeptides and displayed kinase activity, phosphorylating itself on tyrosine, in an immunocomplex kinase assay. These data are consistent with reported findings of the expression of a recombined bcr-abl gene in Ph'-positive CML cells, leading to the synthesis of an altered p210c-abl protein endowed with tyrosine kinase activity. Phosphotyrosine antibodies also detected the expression of the p210c-abl protein in fresh bone marrow cells harvested from CML patients in blast crisis. Besides the p210c-abl protein kinase, phosphotyrosine antibodies recognized other proteins with molecular weights of 110,000, 68,000, and 36,000 (p110, p68, and p36) in K562 cells. When [gamma-32P]ATP was added to nonionic detergent-extracted cells, these proteins became phosphorylated on tyrosine, as confirmed by phosphoamino acid analysis. A comparison with fibroblasts transformed by the v-abl, v-src, and v-fps oncogenes suggested the identity of the p36 protein with the common 36-kilodalton protein substrate of viral oncogene-encoded tyrosine kinases. Enhanced tyrosine phosphorylation of cellular proteins is thus a feature shared by cells transformed by v-abl and cells expressing a rearranged bcr-abl gene.  相似文献   

10.
Sequences termed v-abl, which encode the protein-tyrosine kinase activity of Abelson murine leukemia virus, have been expressed in Escherichia coli as a fusion product (ptabl50 kinase). This fusion protein contains 80 amino acids of SV40 small t and the 403 amino acid protein kinase domain of v-abl. We report here the purification and characterization of this kinase. The purified material contains two proteins (Mr = 59,800 and 57,200), both of which possess sequences derived from v-abl. Overall purification was 3,750-fold, with a 31% yield, such that 117 micrograms of kinase could be obtained from 40 g of E. coli within 6-7 days. The specific kinase activity is over 170 mumol of phosphate min-1 mumol-1, comparable to the most active protein-serine kinases. Kinase activity is insensitive to K+, Na+, Ca2+, Ca2+-calmodulin, cAMP, or cAMP-dependent protein kinase inhibitor. The Km for ATP is dependent on the concentration of the second substrate. GTP can also be used as a phosphate donor. The enzyme can phosphorylate peptides consisting of as few as two amino acids and, at a very low rate, free tyrosine. Incubation of the kinase with [gamma-32P]ATP results in incorporation of 1.0 mol of phosphate/mol of protein. This reaction, however, cannot be blocked by prior incubation with unlabeled ATP. Incubation of 32P-labeled kinase with either ADP or ATP results in the synthesis of [32P]ATP. This suggests the phosphotyrosine residue on the Abelson kinase contains a high energy phosphate bond.  相似文献   

11.
A region of the primary amino acid sequence of the epidermal growth factor receptor (EGF) protein-tyrosine kinase, which is involved in ATP binding, was identified using chemical modification and immunological techniques. EGF receptor was 14C-labelled with the ATP analogue 5'-p-fluorosulphonylbenzoyladenosine and from a tryptic digest a single radiolabelled peptide was isolated. The amino acid sequence was determined to be residues 716-724 and hence lysine residue 721 is located within the ATP-binding site. Antisera were elicited in rabbits to a synthetic peptide identical to residues 716-727 of the EGF receptor and the homologous sequence in v-erb B transforming protein from avian erythroblastosis virus. The affinity-purified antibodies precipitated human ECF receptor from A431 cells and placenta, and the v-erb B protein from erythroblasts. The antibodies inhibited EGF-stimulated receptor protein-tyrosine kinase autophosphorylation and phosphorylation of an exogenous peptide substrate containing tyrosine. The antibodies did not immunoprecipitate the transforming proteins pp60v-src or P120gag-abl or cAMP-dependent protein kinase, proteins which have homologous but not identical sequences surrounding the lysine residue within the ATP-binding site, nor did they react with the platelet-derived growth factor receptor. The antibodies had no effect on the kinase activity of purified v-abl protein in solution. The antibodies may therefore be a specific inhibitor of the tyrosine kinase of the EGF receptor.  相似文献   

12.
A segment of the coding sequence of the Abelson murine leukemia virus transforming gene (v-abl) has been inserted into a plasmid vector that allows its efficient and regulated expression in Escherichia coli. The product of the v-abl-derived coding sequence, designated p60v-abl, accumulated to a level of approximately 10% of total E. coli protein. A procedure is described for the isolation of p60v-abl from E. coli that yields about 50 micrograms of p60v-abl/g wet weight of E. coli. p60v-abl was capable of autophosphorylation and phosphorylating certain E. coli proteins specifically at tyrosine residues. The E. coli-expressed p60v-abl specifically phosphorylated tyrosine residues on casein and angiotensin II. The Km and Vmax values for ATP, casein, and angiotensin II in the p60v-abl kinase reaction have been determined and compared to values reported for other tyrosine-specific kinases. The expression system and isolation procedure described here permit the preparation of functional p60v-abl in quantities sufficient for detailed physical and biochemical characterization and examination of its biological action(s).  相似文献   

13.
Only 1.2 kilobases (kb) at the 5' end of the 3.9-kb v-abl sequence in Abelson murine leukemia virus is required for fibroblast transformation. A precise delineation of this minimum transforming region was made by using small 5' or 3' deletions. Insertions of four amino acids, generated by putting synthetic DNA linkers into various restriction enzyme cleavage sites, abolished transforming activity, indicating that much of the internal sequence of the minimum transforming region plays a critical role in the transformation process. This 5' 1.2 kb of v-abl encodes protein-tyrosine kinase activity when expressed in Escherichia coli. Each of the mutations which caused a loss of transformation activity also resulted in a loss of protein-tyrosine kinase activity when expressed in E. coli. The minimum transforming region of v-abl contains amino acid homology to other protein-tyrosine kinase oncogenes, and a comparison with these oncogenes is presented.  相似文献   

14.
Binding of epidermal growth factor (EGF) to its receptor results in a cascade of events that culminate in cell division. The receptor is present on the cell surface in two forms of high and low affinity binding for EGF. EGF binding activates the receptor's intracellular tyrosine kinase activity and subsequently causes the receptor to be rapidly internalized into the cell via clathrin-coated pits. We have cloned the EGF receptor cDNA into a retroviral expression vector and made mutations in vitro to investigate the function of different receptor domains. Deletion of cytoplasmic sequences abolishes high but not low affinity sites as well as impairing the ability of the protein to internalize into cells. Thus, cytoplasmic sequences must be involved in the regulation of high affinity sites and are required for EGF-induced receptor internalization. A four amino acid insertion mutation at residue 708 abolishes the protein-tyrosine kinase activity of the immunoprecipitated receptor. However, this receptor mutant exhibits both the high and low affinity states, internalizes efficiently and is able to cause cells to undergo DNA synthesis in response to EGF. Another four amino acid insertion mutation (residue 888) abolishes protein-tyrosine kinase activity, high affinity binding, internalization and mitogenic responsiveness. Finally, a chimaeric receptor composed of the extracellular EGF binding domain and the cytoplasmic v-abl kinase region transforms Rat-I cells. This chimaeric receptor possesses intrinsic protein tyrosine kinase activity which cannot be regulated by EGF. Moreover, EGF fails to induce the internalization of the chimaeric receptor.  相似文献   

15.
Here we investigate the role of the Raf-1 kinase in transformation by the v-abl oncogene. Raf-1 can activate a transforming signalling cascade comprising the consecutive activation of Mek and extracellular-signal-regulated kinases (Erks). In v-abl-transformed cells the endogenous Raf-1 protein was phosphorylated on tyrosine and displayed high constitutive kinase activity. The activities of the Erks were constitutively elevated in both v-raf- and v-abl-transformed cells. In both cell types the activities of Raf-1 and v-raf were almost completely suppressed after activation of the cyclic AMP-dependent kinase (protein kinase A [PKA]), whereas the v-abl kinase was not affected. Raf inhibition substantially diminished the activities of Erks in v-raf-transformed cells but not in v-abl-transformed cells, indicating that v-abl can activate Erks by a Raf-1-independent pathway. PKA activation induced apoptosis in v-abl-transformed cells while reverting v-raf transformation without severe cytopathic effects. Overexpression of Raf-1 in v-abl-transformed cells partially protected the cells from apoptosis induced by PKA activation. In contrast to PKA activators, a Mek inhibitor did not induce apoptosis. The diverse biological responses correlated with the status of c-myc gene expression. v-abl-transformed cells featured high constitutive levels of expression of c-myc, which were not reduced following PKA activation. Myc activation has been previously shown to be essential for transformation by oncogenic Abl proteins. Using estrogen-regulated c-myc and temperature-sensitive Raf-1 mutants, we found that Raf-1 activation could protect cells from c-myc-induced apoptosis. In conclusion, these results suggest (i) that Raf-1 participates in v-abl transformation via an Erk-independent pathway by providing a survival signal which complements c-myc in transformation, and (ii) that cAMP agonists might become useful for the treatment of malignancies where abl oncogenes are involved, such as chronic myeloid leukemias.  相似文献   

16.
The expression of v-abl oncogene during the in vitro differentiation of an Abelson-virus-transformed immature B precursor cell line from immunoglobulin-null to intracytoplasmic mu-positive cells and further to intracytoplasmic gamma 2b-positive cells was examined. The results showed no significant alteration in the amounts and tyrosine kinase activity of v-abl oncogene product during differentiation, indicating that B cell differentiation processes are independent of v-abl functions.  相似文献   

17.
The Drosophila melanogaster abl and the murine v-abl genes encode tyrosine protein kinases (TPKs) whose amino acid sequences are highly conserved. To assess functional conservation between the two gene products, we constructed Drosophila abl/v-abl-chimeric Abelson murine leukemia viruses. In these chimeric Abelson murine leukemia viruses, the TPK and carboxy-terminal regions of v-abl were replaced with the corresponding regions of D. melanogaster abl. The chimeric Abelson murine leukemia viruses were able to mediate morphological and oncogenic transformation of NIH 3T3 cells and were able to abrogate the interleukin-3 dependence of a lymphoid cell line. We also found that a virus that contained both TPK and carboxy-terminal Drosophila abl regions had no in vitro transforming activity for primary bone marrow cells and lacked the ability to induce tumors in susceptible mice. A virus that replaced only a portion of the v-abl TPK region with that of Drosophila abl had low activity in in vitro bone marrow transformation and tumorigenesis assays. These results indicate that the transforming functions of abl TPKs are only partially conserved through evolution. These results also imply that the TPK region of v-abl is a major determinant of its efficient lymphoid cell-transforming activity.  相似文献   

18.
The v-abl and v-src oncogenes encode protein-tyrosine kinases that possess different biological properties in spite of their high degree of amino acid conservation. To correlate functional differences with structural domains of the two oncogenes, we recombined v-abl and v-src just downstream of the lysines in their ATP-binding sites, within the kinase domain. The biological activity of the chimeric genes was studied and compared with that of v-src and v-abl. The v-src/v-abl recombinant shared with v-src and v-abl the ability to transform fibroblasts. In addition, like v-abl, it transformed lymphoid cells and relieved a hematopoietic cell line of its interleukin 3 requirement. In contrast, the reciprocal construct, v-abl/v-src, was transformation defective. Lack of biological activity correlated with formation of a stable complex between the chimeric protein and two cellular proteins and with low kinase activity. We conclude that the specificity within the kinase domain determines the particular biological behavior of protein-tyrosine kinase oncogenes.  相似文献   

19.
Various derivatives of thiazolidine-diones have been identified as tyrosine protein kinase inhibitors. The epidermal growth factor (EGF) receptor kinase and c-src kinase were inhibited in vitro with IC50 values in the range of 1-7 microM. The v-abl tyrosine protein kinase was not inhibited by thiazolidine-diones. Inhibition was found to be specific for tyrosine protein kinases. Inhibition of serine/threonine protein kinases was not observed. The active derivatives were shown to inhibit EGF-induced receptor autophosphorylation, either in vitro or in intact cells, and were also found to inhibit growth of the EGF-dependent BALB/MK and A431 cell lines (IC50 1-3 microM). Growth of the interleukin-3-dependent myeloid cell line FDC-P1 was inhibited with equal efficiency. Thus, in these cell lines, members of the c-src kinase family are also potential targets for inhibition by the compounds.  相似文献   

20.
This report describes the cloning and characterization of rat leukocyte common antigen-related protein (rLAR), a receptor-like protein tyrosine phosphatase (PTPase). The recombinant cytoplasmic PTPase domain was expressed at high levels in bacteria and purified to homogeneity. Kinetic properties of the PTPase were examined along with potential modulators of PTPase activity. Several sulfhydryl-directed reagents were effective inhibitors, and a surprising distinction between iodoacetate and iodoacetamide was observed. The latter compound was an extremely poor inhibitor when compared to iodoacetate, suggesting that iodoacetate may interact selectively with a positive charge at or near the active site of the enzyme. Site-directed mutants were made at 4 highly conserved cysteine residues found at positions 1434, 1522, 1723, and 1813 within the protein. The Cys-1522/Ser mutation resulted in a 99% loss of enzymatic activity of the pure protein. This observation is consistent with greater than 99% of the PTPase activity being found in the first domain of the PTPase and demonstrates the critical importance of this cysteine residue in catalysis. The recombinant C1522S mutant phosphatase could also be phosphorylated in vitro by protein kinase C and p43v-abl tyrosine kinase. When pure recombinant PTPase was mixed with 32P-labeled tyrosine substrate and then rapidly denatured, a 32P-labeled enzyme intermediate could be trapped and visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The catalytically inactive C1522S mutant did not form the phosphoenzyme intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号