首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To understand the composition and structure of denitrifying communities in the oxygen-deficient zone off the Pacific coast of Mexico, the molecular diversity of nir genes from sediments obtained at four stations was examined by using a PCR-based cloning approach. A total of 50 operational taxonomic units (OTUs) for nirK and 82 OTUs for nirS were obtained from all samples. Forty-four of the nirS clones and 31 of the nirK clones were sequenced; the levels of similarity of the nirS clones were 52 to 92%, and the levels of similarity of the nirS clones were 50 to 99%. The percentages of overlapping OTUs between stations were 18 to 30% for nirS and 5 to 8% for nirK. Sequence analysis revealed that 26% of the nirS clones were related to the nirS genes of Alcaligenes faecalis (80 to 94% similar) and Pseudomonas stutzeri (80 to 99%), whereas 3 to 31% of the nirK clones were closely related to the nirK genes of Pseudomonas sp. strain G-179 (98 to 99%), Bradyrhizobium japonicum (91%), Blastobacter denitrificans (83%), and Alcaligenes xylosoxidans (96%). The rest of the clones, however, were less than 80% similar to nirS and nirK sequences available in sequence databases. The results of a principal-component analysis (PCA) based on the percentage of OTUs and biogeochemical data indicated that the nitrate concentration and oxygen have an effect on the denitrifying communities. The communities at the stations in oxygen-deficient zones were more similar than the communities at the stations in the oxygenated zone. The denitrifying communities were more similar at the stations that were closer together and had similar nitrate levels. Also, the results of PCA based on biogeochemical properties suggest that geographic location and biogeochemical conditions, especially the nitrate and oxygen levels, appear to be the key factors that control the structure of denitrifying communities.  相似文献   

2.
Nitrate-contaminated groundwater samples were analysed for nirK and nirS gene diversity. The samples differed with respect to nitrate, uranium, heavy metals, organic carbon content, pH and dissolved oxygen levels. A total of 958 nirK and 1162 nirS clones were screened by restriction fragment length polymorphism (RFLP) analysis: 48 and 143 distinct nirK and nirS clones, respectively, were obtained. A single dominant nirK restriction pattern was observed for all six samples and was 83% identical to the Hyphomicrobium zavarzinii nirK gene. A dominant nirS pattern was observed for four of the samples, including the background sample, and was 95% identical to the nirS of Alcaligenes faecalis. Diversity indices for nirK and nirS sequences were not related to any single geochemical characteristic, but results suggested that the diversity of nirK genes was inversely proportional to the diversity of nirS. Principal component analysis (PCA) of the sites based on geochemistry grouped the samples by low, moderate and high nitrate but PCA of the unique operational taxonomic units (OTUs) distributions grouped the samples differently. Many of the sequences were not closely related to previously observed genes and some phylogenetically related sequences were obtained from similar samples. The results indicated that the contaminated groundwater contained novel nirK and nirS sequences, functional diversity of both genes changed in relation to the contaminant gradient, but the nirK and nirS functional diversity was affected differently.  相似文献   

3.
The genetic heterogeneity of nitrite reductase gene (nirK and nirS) fragments from denitrifying prokaryotes in forested upland and marsh soil was investigated using molecular methods. nirK gene fragments could be amplified from both soils, whereas nirS gene fragments could be amplified only from the marsh soil. PCR products were cloned and screened by restriction fragment length polymorphism (RFLP), and representative fragments were sequenced. The diversity of nirK clones was lower than the diversity of nirS clones. Among the 54 distinct nirK RFLP patterns identified in the two soils, only one pattern was found in both soils and in each soil two dominant groups comprised >35% of all clones. No dominance and few redundant patterns were seen among the nirS clones. Phylogenetic analysis of deduced amino acids grouped the nirK sequences into five major clusters, with one cluster encompassing most marsh clones and all upland clones. Only a few of the nirK clone sequences branched with those of known denitrifying bacteria. The nirS clones formed two major clusters with several subclusters, but all nirS clones showed less than 80% identity to nirS sequences from known denitrifying bacteria. Overall, the data indicated that the denitrifying communities in the two soils have many members and that the soils have a high richness of different nir genes, especially of the nirS gene, most of which have not yet been found in cultivated denitrifiers.  相似文献   

4.
Genetic heterogeneity of denitrifying bacteria in sediment samples from Puget Sound and two sites on the Washington continental margin was studied by PCR approaches amplifying nirK and nirS genes. These structurally different but functionally equivalent single-copy genes coding for nitrite reductases, a key enzyme of the denitrification process, were used as a molecular marker for denitrifying bacteria. nirS sequences could be amplified from samples of both sampling sites, whereas nirK sequences were detected only in samples from the Washington margin. To assess the underlying nir gene structure, PCR products of both genes were cloned and screened by restriction fragment length polymorphism (RFLP). Rarefraction analysis revealed a high level of diversity especially for nirS clones from Puget Sound and a slightly lower level of diversity for nirK and nirS clones from the Washington margin. One group dominated within nirK clones, but no dominance and only a few redundant clones were seen between sediment samples for nirS clones in both habitats. Hybridization and sequencing confirmed that all but one of the 228 putative nirS clones were nirS with levels of nucleotide identities as low as 45.3%. Phylogenetic analysis grouped nirS clones into three distinct subclusters within the nirS gene tree which corresponded to the two habitats from which they were obtained. These sequences had little relationship to any strain with known nirS sequences or to isolates (mostly close relatives of Pseudomonas stutzeri) from the Washington margin sediment samples. nirK clones were more closely related to each other than were the nirS clones, with 78.6% and higher nucleotide identities; clones showing only weak hybridization signals were not related to known nirK sequences. All nirK clones were also grouped into a distinct cluster which could not be placed with any strain with known nirK sequences. These findings show a very high diversity of nir sequences within small samples and that these novel nir clusters, some very divergent from known sequences, are not known in cultivated denitrifiers.  相似文献   

5.
Nitrogen flux into the coastal environment via submarine groundwater discharge may be modulated by microbial processes such as denitrification, but the spatial scales at which microbial communities act and vary are not well understood. In this study, we examined the denitrifying community within the beach aquifer at Huntington Beach, California, where high-nitrate groundwater is a persistent feature. Nitrite reductase-encoding gene fragments (nirK and nirS), responsible for the key step in the denitrification pathway, were PCR amplified, cloned, and sequenced from DNAs extracted from aquifer sediments collected along a cross-shore transect, where groundwater ranged in salinity from 8 to 34 practical salinity units and in nitrate concentration from 0.5 to 330 muM. We found taxonomically rich and novel communities, with all nirK clones exhibiting <85% identity and nirS clones exhibiting <92% identity at the amino acid level to those of cultivated denitrifiers and other environmental clones in the database. Unique communities were found at each site, despite being located within 40 m of each other, suggesting that the spatial scale at which denitrifier diversity and community composition vary is small. Statistical analyses of nir sequences using the Monte Carlo-based program integral-Libshuff confirmed that some populations were indeed distinct, although further sequencing would be required to fully characterize the highly diverse denitrifying communities at this site.  相似文献   

6.
Immobilization of uranium in groundwater can be achieved through microbial reduction of U(VI) to U(IV) upon electron donor addition. Microbial community structure was analyzed in ethanol-biostimulated and control sediments from a high-nitrate (>130 mM), low-pH, uranium-contaminated site in Oak Ridge, TN. Analysis of small subunit (SSU) rRNA gene clone libraries and polar lipid fatty acids from sediments revealed that biostimulation resulted in a general decrease in bacterial diversity. Specifically, biostimulation resulted in an increase in the proportion of Betaproteobacteria (10% of total clones in the control sediment versus 50 and 79% in biostimulated sediments) and a decrease in the proportion of Gammaproteobacteria and Acidobacteria. Clone libraries derived from dissimilatory nitrite reductase genes (nirK and nirS) were also dominated by clones related to Betaproteobacteria (98% and 85% of total nirK and nirS clones, respectively). Within the nirK libraries, one clone sequence made up 59 and 76% of sequences from biostimulated sediments but only made up 10% of the control nirK library. Phylogenetic analysis of SSU rRNA and nirK gene sequences from denitrifying pure cultures isolated from the site indicate that all belong to a Castellaniella species; nearly identical sequences also constituted the majority of biostimulated SSU rRNA and nirK clone libraries. Thus, by combining culture-independent with culture-dependent techniques, we were able to link SSU rRNA clone library information with nirK sequence data and conclude that a potentially novel Castellaniella species is important for in situ nitrate removal at this site.  相似文献   

7.
External carbon sources can enhance denitrification rates and thus improve nitrogen removal in wastewater treatment plants. The effects of adding methanol and ethanol on the genetic and metabolic diversity of denitrifying communities in activated sludge were compared using a pilot-scale plant with two parallel lines. A full-scale plant receiving the same municipal wastewater, but without external carbon source addition, was the reference. Metabolic profiles obtained from potential denitrification rates with 10 electron donors showed that the denitrifying communities altered their preferences for certain compounds after supplementation with methanol or ethanol and that methanol had the greater impact. Clone libraries of nirK and nirS genes, encoding the two different nitrite reductases in denitrifiers, revealed that methanol also increased the diversity of denitrifiers of the nirS type, which indicates that denitrifiers favored by methanol were on the rise in the community. This suggests that there might be a niche differentiation between nirS and nirK genotypes during activated sludge processes. The composition of nirS genotypes also varied greatly among all samples, whereas the nirK communities were more stable. The latter was confirmed by denaturing gradient gel electrophoresis of nirK communities on all sampling occasions. Our results support earlier hypotheses that the compositions of denitrifier communities change during predenitrification processes when external carbon sources are added, although no severe effect could be observed from an operational point of view.  相似文献   

8.
"Candidatus Accumulibacter phosphatis" is considered a polyphosphate-accumulating organism (PAO) though it has not been isolated yet. To reveal the denitrification ability of this organism, we first concentrated this organism by flow cytometric sorting following fluorescence in situ hybridization (FISH) using specific probes for this organism. The purity of the target cells was about 97% of total cell count in the sorted sample. The PCR amplification of the nitrite reductase genes (nirK and nirS) from unsorted and sorted cells was performed. Although nirK and nirS were amplified from unsorted cells, only nirS was detected from sorted cells, indicating that "Ca. Accumulibacter phosphatis" has nirS. Furthermore, nirS fragments were cloned from unsorted (Ba clone library) and sorted (Bd clone library) cells and classified by restriction fragment length polymorphism analysis. The most dominant clone in clone library Ba, which represented 62% of the total number of clones, was not found in clone library Bd. In contrast, the most dominant clone in clone library Bd, which represented 59% of the total number of clones, represented only 2% of the total number of clones in clone library Ba, indicating that this clone could be that of "Ca. Accumulibacter phosphatis." The sequence of this nirS clone exhibited less than 90% similarity to the sequences of known denitrifying bacteria in the database. The recovery of the nirS genes makes it likely that "Ca. Accumulibacter phosphatis" behaves as a denitrifying PAO capable of utilizing nitrite instead of oxygen as an electron acceptor for phosphorus uptake.  相似文献   

9.
The nirS nitrite reductase genes were studied in two strains (strains 27 and 28) isolated from two denitrifying reactors and characterized as Thauera according to their 16S rRNA gene sequences. Strain 28 contains a single nirS sequence, which is related to the nirS of Thauera mechernichensis, and strain 27 contains two nirS sequences; one is similar to the nirS sequence from Thauera mechernichensis (gene 2), but the second one (gene 8) is from a separate clade with nirS from Pseudomonas stutzeri, Azoarcus species, Alcaligenes faecalis, and other Thauera species. Both genes were expressed, but gene 8 was constitutively expressed while gene 2 was positively regulated by nitrate.  相似文献   

10.
The major sites of water column denitrification in the ocean are oxygen minimum zones (OMZ), such as one in the eastern South Pacific (ESP). To understand the structure of denitrifying communities in the OMZ off Chile, denitrifier communities at two sites in the Chilean OMZ (Antofagasta and Iquique) and at different water depths were explored by terminal restriction fragment length polymorphism analysis and cloning of polymerase chain reaction (PCR)-amplified nirS genes. NirS is a functional marker gene for denitrification encoding cytochrome cd1-containing nitrite reductase, which catalyses the reduction of nitrite to nitric oxide, the key step in denitrification. Major differences were found between communities from the two geographic locations. Shifts in community structure occurred along a biogeochemical gradient at Antofagasta. Canonical correspondence analysis indicated that O2, NO3-, NO2- and depth were important environmental factors governing these communities along the biogeochemical gradient in the water column. Phylogenetic analysis grouped the majority of clones from the ESP in distinct clusters of genes from presumably novel and yet uncultivated denitrifers. These nirS clusters were distantly related to those found in the water column of the Arabian Sea but the phylogenetic distance was even higher compared with environmental sequences from marine sediments or any other habitat. This finding suggests similar environmental conditions trigger the development of denitrifiers with related nirS genotypes despite large geographic distances.  相似文献   

11.
Quantitative PCR of denitrification genes encoding the nitrate, nitrite, and nitrous oxide reductases was used to study denitrifiers across a glacier foreland. Environmental samples collected at different distances from a receding glacier contained amounts of 16S rRNA target molecules ranging from 4.9 x 10(5) to 8.9 x 10(5) copies per nanogram of DNA but smaller amounts of narG, nirK, and nosZ target molecules. Thus, numbers of narG, nirK, nirS, and nosZ copies per nanogram of DNA ranged from 2.1 x 10(3) to 2.6 x 10(4), 7.4 x 10(2) to 1.4 x 10(3), 2.5 x 10(2) to 6.4 x 10(3), and 1.2 x 10(3) to 5.5 x 10(3), respectively. The densities of 16S rRNA genes per gram of soil increased with progressing soil development. The densities as well as relative abundances of different denitrification genes provide evidence that different denitrifier communities develop under primary succession: higher percentages of narG and nirS versus 16S rRNA genes were observed in the early stage of primary succession, while the percentages of nirK and nosZ genes showed no significant increase or decrease with soil age. Statistical analyses revealed that the amount of organic substances was the most important factor in the abundance of eubacteria as well as of nirK and nosZ communities, and copy numbers of these two genes were the most important drivers changing the denitrifying community along the chronosequence. This study yields an initial insight into the ecology of bacteria carrying genes for the denitrification pathway in a newly developing alpine environment.  相似文献   

12.
The potential denitrification activity and the composition of the denitrifying bacterial community in a full-scale rockwool biofilter used for treating livestock manure composting emissions were analyzed. Packing material sampled from the rockwool biofilter was anoxically batch-incubated with 15N-labeled nitrate in the presence of different electron donors (compost extract, ammonium, hydrogen sulfide, propionate, and acetate), and responses were compared with those of activated sludge from a livestock wastewater treatment facility. Overnight batch-incubation showed that potential denitrification activity for the rockwool samples was higher with added compost extract than with other potential electron donors. The number of 16S rRNA and nosZ genes in the rockwool samples were in the range of 1.64–3.27 × 109 and 0.28–2.27 × 108 copies/g dry, respectively. Denaturing gradient gel electrophoresis analysis targeting nirK, nirS, and nosZ genes indicated that the distribution of nir genes was spread in a vertical direction and the distribution of nosZ genes was spread horizontally within the biofilter. The corresponding denitrifying enzymes were mainly related to those from Phyllobacteriaceae, Bradyrhizobiaceae, and Alcaligenaceae bacteria and to environmental clones retrieved from agricultural soil, activated sludge, freshwater environments, and guts of earthworms or other invertebrates. A nosZ gene fragment having 99% nucleotide sequence identity with that of Oligotropha carboxidovorans was also detected. Some nirK fragments were related to NirK from micro-aerobic environments. Thus, denitrification in this full-scale rockwool biofilter might be achieved by a consortium of denitrifying bacteria adapted to the intensely aerated ecosystem and utilizing mainly organic matter supplied by the livestock manure composting waste-gas stream.  相似文献   

13.
14.
Gene sequence analysis of nirS and nirK, both encoding nitrite reductases, was performed on cultivated denitrifiers to assess their incidence in different bacterial taxa and their taxonomical value. Almost half of the 227 investigated denitrifying strains did not render an nir amplicon with any of five previously described primers. NirK and nirS were found to be prevalent in Alphaproteobacteria and Betaproteobacteria, respectively, nirK was detected in the Firmicutes and Bacteroidetes and nirS and nirK with equal frequency in the Gammaproteobacteria. These observations deviated from the hitherto reported incidence of nir genes in bacterial taxa. NirS gene phylogeny was congruent with the 16S rRNA gene phylogeny on family or genus level, although some strains did group within clusters of other bacterial classes. Phylogenetic nirK gene sequence analysis was incongruent with the 16S rRNA gene phylogeny. NirK sequences were also found to be significantly more similar to nirK sequences from the same habitat than to nirK sequences retrieved from highly related taxa. This study supports the hypothesis that horizontal gene transfer events of denitrification genes have occurred and underlines that denitrification genes should not be linked with organism diversity of denitrifiers in cultivation-independent studies.  相似文献   

15.
The abundance of genes related to the nitrogen biogeochemical cycle and the microbial community in forest soils (bacteria, archaea, fungi) were quantitatively analyzed via real-time PCR using 11 sets of specific primers amplifying nifH, bacterial amoA, archaeal amoA, narG, nirS, nirK, norB, nosZ, bacterial 16S rRNA gene, archaeal 16S rRNA gene, and the ITS sequence of fungi. Soils were sampled from Bukhan Mountain from September of 2010 to July of 2011 (7 times). Bacteria were the predominant microbial community in all samples. However, the abundance of archaeal amoA was greater than bacterial amoA throughout the year. The abundances of nifH, nirS, nirK, and norB genes changed in a similar pattern, while narG and nosZ appeared in sensitive to the environmental changes. Clone libraries of bacterial 16S rRNA genes were constructed from summer and winter soil samples and these revealed that Acidobacteria was the most predominant phylum in acidic forest soil environments in both samples. Although a specific correlation of environmental factor and gene abundance was not verified by principle component analysis, our data suggested that the combination of biological, physical, and chemical characteristics of forest soils created distinct conditions favoring the nitrogen biogeochemical cycle and that bacterial communities in undisturbed acidic forest soils were quite stable during seasonal change.  相似文献   

16.
An analysis of the molecular diversity of N(2) fixers and denitrifiers associated with mangrove roots was performed using terminal restriction length polymorphism (T-RFLP) of nifH (N(2) fixation) and nirS and nirK (denitrification), and the compositions and structures of these communities among three sites were compared. The number of operational taxonomic units (OTU) for nifH was higher than that for nirK or nirS at all three sites. Site 3, which had the highest organic matter and sand content in the rhizosphere sediment, as well as the lowest pore water oxygen concentration, had the highest nifH diversity. Principal component analysis of biogeochemical parameters identified soil texture, organic matter content, pore water oxygen concentration, and salinity as the main variables that differentiated the sites. Nonmetric multidimensional scaling (MDS) analyses of the T-RFLP data using the Bray-Curtis coefficient, group analyses, and pairwise comparisons between the sites clearly separated the OTU of site 3 from those of sites 1 and 2. For nirS, there were statistically significant differences in the composition of OTU among the sites, but the variability was less than for nifH. OTU defined on the basis of nirK were highly similar, and the three sites were not clearly separated on the basis of these sequences. The phylogenetic trees of nifH, nirK, and nirS showed that most of the cloned sequences were more similar to sequences from the rhizosphere isolates than to those from known strains or from other environments.  相似文献   

17.
Investigation of the diversity of nirK and nirS in denitrifying bacteria revealed that salinity decreased the diversity in a nitrate-containing saline wastewater treatment system. The predominant nirS clone was related to nirS derived from marine bacteria, and the predominant nirK clone was related to nirK of the genus ALCALIGENES:  相似文献   

18.
Marine sediments account for up to 66% of the loss of nitrogen load to coastal areas. Sedimentary denitrification is the main sink for fixed nitrogen in the global nitrogen budget, and thus it is important to understand the structure and composition of denitrifying communities. To understand the structure and composition of denitrifying communities, the diversity of nitrite reductase (nirS) genes from sediments along the Gulf of Mexico was examined using a PCR-based cloning approach. Sediments were collected at three different depths (0-0.5, 4-5 and 19-21 cm). Geochemical analysis revealed decreasing nitrate and oxygen concentrations with increasing sediment depth. This trend coincided with the decrease in diversity of denitrifying bacteria. LIBSHUFF analysis indicated that the clone library in the shallowest sediment (depth, 0-0.5 cm) was significantly different from that in the deepest sediment (depth, 19-21 cm), and that the deeper sediments (depths of 4-5 and 19-21 cm) were significantly similar. Community structural shifts were evident between the shallowest (oxic zone) and deepest (anoxic zone) sediments. Community changes within the deepest sediments were more subtle, with the presence of different nirS clone sequences gradually becoming dominant or, alternatively, decreasing with depth. The changes in community structure at this depth are possibly driven by nutrient availability, with lower quality sources of carbon and energy leading to the disappearance of nirS sequences common in the top layer. The majority of recovered nirS sequences were phylogenetically divergent relative to known denitrifying bacteria in the database.  相似文献   

19.
Biofilms were cultivated on polycarbonate strips in rotating annular reactors using South Saskatchewan River water during the fall of 1999 and the fall of 2001, supplemented with carbon (glucose), nitrogen (NH4Cl), phosphorus (KH2PO4), or combined nutrients (CNP), with or without hexadecane, a model compound representing aliphatic hydrocarbons used to simulate a pollutant. In fall 1999 and fall 2001, comparable denitrification activities and catabolic potentials were observed in the biofilms, implying that denitrifying populations showed similar activity patterns and catabolic potentials during the fall from year to year in this river ecosystem, when environmental conditions were similar. Both nirS and nirK denitrification genes were detected by PCR amplification, suggesting that both denitrifying bacterial subpopulations can potentially contribute to total denitrification. Between 91.7 and 99.8% of the consumed N was emitted in the form of N2, suggesting that emission of N2O, a major potent greenhouse gas, by South Saskatchewan River biofilms is low. Denitrification was markedly stimulated by the addition of CNP, and nirS and nirK genes were predominant only in the presence of CNP. In contrast, individual nutrients had no impact on denitrification and on the occurrence of nirS and nirK genes detected by PCR amplification. Similarly, only CNP resulted in significant increases in algal and bacterial biomass relative to control biofilms. Biomass measurements indicated a linkage between autotrophic and heterotrophic populations in the fall 1999 biofilms. Correlation analyses demonstrated a significant relationship (P < or = 0.05) between the denitrification rate and the biomass of algae and heterotrophic bacteria but not cyanobacteria. At the concentration assessed (1 ppb), hexadecane partially inhibited denitrification in both years, slightly more in the fall of 2001. This study suggested that the response of the anaerobic heterotrophic biofilm community may be cyclic and predictable from year to year and that there are interactive effects between nutrients and the contaminant hexadecane.  相似文献   

20.
Chemical profiles of the Black Sea suboxic zone show a distribution of nitrogen species which is traditionally associated with denitrification, i.e. a secondary nitrite maximum associated with nitrate depletion and a N(2) gas peak. To better understand the distribution and diversity of the denitrifier community in the Black Sea suboxic zone, we combined a cultivation approach with cloning and sequencing of PCR-amplified nitrite reductase (nirS and nirK) genes. The Black Sea suboxic zone appears to harbour a homogeneous community of denitrifiers. For nirK, over 94% of the sequences fell into only three distinct phylogenetic clusters, and for nirS, a single closely related sequence type accounted for 91% of the sequences retrieved. Both nirS and nirK genes showed a dramatic shift in community composition at the bottom of the suboxic zone, but overall, nirK-based community composition showed much greater variation across depths compared with the highly uniform distribution of nirS sequences throughout the suboxic zone. The dominant nirK and nirS sequences differed at the amino acid level by at least 17% and 8%, respectively, from their nearest database matches. Denitrifying isolates recovered from the suboxic zone shared 97% 16S rRNA gene sequence similarity with Marinobacter maritimus. Analysis of the recently discovered nirS gene from the anammox bacterium Candidatus'Kuenenia stuttgartiensis' revealed that mismatches with commonly used primers may have prevented the previous detection of this divergent sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号