首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The outer membrane of Gram‐negative bacteria protects the cell against bactericidal substances. Passage of nutrients and waste is assured by outer membrane porins, beta‐barrel transmembrane channels. While atomic structures of several porins have been solved, so far little is known on the supramolecular structure of the outer membrane. Here we present the first high‐resolution view of a bacterial outer membrane gently purified maintaining remnants of peptidoglycan on the perisplasmic surface. Atomic force microscope images of outer membrane fragments of the size of ~50% of the bacterial envelope revealed that outer membrane porins are by far more densely packed than previously assumed. Indeed the outer membrane is a molecular sieve rather than a membrane. Porins cover ~70% of the membrane surface and form locally regular lattices. The potential role of exposed aromatic residues in the formation of the supramolecular assembly is discussed. Finally, we present first structural data of the outer membrane porin from the marine Gram‐negative bacteria Roseobacter denitrificans, and we perform a sequence alignment with porins of known structure.  相似文献   

2.
The role of porins in neisserial pathogenesis and immunity   总被引:11,自引:0,他引:11  
Neisseria meningitidis and Neisseria gonorrhoeae are Gram-negative pathogenic bacteria responsible for bacterial meningitis and septicemia, and the sexually transmitted disease gonorrhea, respectively. Porins are the most represented outer membrane proteins in the pathogenic Neisseria species, functioning as pores for the exchange of ions, and are characterized by a trimeric beta-barrel structure. Neisserial porins have been shown to act as adjuvants in the immune response via activation of B cells and other antigen-presenting cells (APCs). Their effect on the immune response is mediated by upregulation of the costimulatory molecule B7-2 (CD86) on the surface of APCs, an effect that is Toll-like receptor 2- and MyD88-dependent. The effect of neisserial porins on the immune system also involves interaction with components of the complement cascade. Furthermore, neisserial porins co-localize with mitochondria of target cells, where they appear to modulate apoptosis.  相似文献   

3.
Porins isolated from Salmonella typhi have been demonstrated to protect against the challenge with this bacteria in mice. The mechanism has not been clarified, but could be associated with activation of both humoral and cellular immunity. In order to evaluate the induction of specific T cell responses, the lymphocytic proliferation to porins isolated from Salmonella typhimurium, Salmonella typhi and Escherichia coli was examined by 3H-thymidine incorporation assay in mice immunized with three different antigens: acetone-killed S. typhimurium, its porins, or outer-membrane proteins (OMPs) isolated from S. typhi. Higher proliferative responses were observed in mice immunized with porins and OMPs compared with those which received the acetone-killed bacteria. Although cross-reactivity was observed between porins, they were not mitogenic. Moreover, porins were able to activate T lymphocytes isolated from mice immunized with S. typhi OMPs. These results suggest that T cell activation, through the release of lymphokines, may play a role in the induction of protective immunity with porins.  相似文献   

4.
Many outer membrane proteins (OMPs) in Gram-negative bacteria possess known beta-barrel three-dimensional (3D) structures. These proteins, including channel-forming transmembrane porins, are diverse in sequence but exhibit common structural features. We here report computational analyses of six outer membrane proteins of known 3D structures with respect to (1) secondary structure, (2) hydropathy, and (3) amphipathicity. Using these characteristics, as well as the presence of an N-terminal targeting sequence, a program was developed allowing prediction of integral membrane beta-barrel proteins encoded within any completely sequenced prokaryotic genome. This program, termed the beta-barrel finder (BBF) program, was used to analyze the proteins encoded within the Escherichia coli genome. Out of 4290 sequences examined, 118 (2.8%) were retrieved. Of these, almost all known outer membrane proteins with established beta-barrel structures as well as many probable outer membrane proteins were identified. This program should be useful for predicting the occurrence of outer membrane proteins in bacteria with completely sequenced genomes.  相似文献   

5.
The outer membrane protects Gram-negative bacteria against a harsh environment. At the same time, the embedded proteins fulfil a number of tasks that are crucial to the bacterial cell, such as solute and protein translocation, as well as signal transduction. Unlike membrane proteins from all other sources, integral outer membrane proteins do not consist of transmembrane alpha-helices, but instead fold into antiparallel beta-barrels. Over recent years, the atomic structures of several outer membrane proteins, belonging to six families, have been determined. They include the OmpA membrane domain, the OmpX protein, phospholipase A, general porins (OmpF, PhoE), substrate-specific porins (LamB, ScrY) and the TonB-dependent iron siderophore transporters FhuA and FepA. These crystallographic studies have yielded invaluable insight into and decisively advanced the understanding of the functions of these intriguing proteins. Our review is aimed at discussing their common principles and peculiarities as well as open questions associated with them.  相似文献   

6.
7.
Chloroplasts, unique organelles of plants, originated from endosymbiosis of an ancestor of today's cyanobacteria with a mitochondria-containing host cell. It is assumed that the outer envelope membrane, which delimits the chloroplast from the surrounding cytosol, was thus inherited from its Gram-negative bacterial ancestor. This plastid-specific membrane is thus equipped with elements of prokaryotic and eukaryotic origin. In particular, the membrane-intrinsic outer envelope proteins (OEPs) form solute channels with properties reminiscent of porins and channels in the bacterial outer membrane. OEP channels are characterised by distinct specificities for metabolites and a quite peculiar expression pattern in specialised plant organs and plastids, thus disproving the assumption that the outer envelope is a non-specific molecular sieve. The same is true for the outer membrane of Gram-negative bacteria, which functions as a permeability barrier in addition to the cytoplasmic membrane, and embeds different classes of channel pores. The channels of these prokaryotic prototype proteins, ranging from unspecific porins to specific channels to ligand-gated receptors, are exclusively built of beta-barrels. Although most of the OEP channels are formed by beta-strands as well, phylogeny based on sequence homology alone is not feasible. Thus, the comparison of structural and functional properties of chloroplast outer envelope and bacterial outer membrane channels is required to pinpoint the ancestral OEP 'portrait gallery'.  相似文献   

8.
9.
Outer membrane proteins of pathogenic spirochetes   总被引:10,自引:0,他引:10  
  相似文献   

10.
Porins from outer membrane of Gram-negative bacteria have a highly stable structure. Our previous studies on porin from Paracoccus denitrificans showed that the outer membrane protein porin is extremely stable toward heat, pH, and chemical denaturants. The major question we have addressed in this paper is whether the high stability of porin is a consequence of the beta-barrel structure and whether it is required for its function. To explain this we have analyzed two cases: first, we used porin wild-type and mutants and compared their structure and function; second, we compared the activity of porin preheated to different temperatures. Structural changes were monitored by infrared spectroscopy. We observed that the structural stability of porin is not equivalent to functional activity as minor alteration in the structure can result in drastic differences in the activity of porins.  相似文献   

11.
Gram-negative bacteria contain a double membrane which serves for both protection and for providing nutrients for viability. The outermost of these membranes is called the outer membrane (OM), and it contains a host of fully integrated membrane proteins which serve essential functions for the cell, including nutrient uptake, cell adhesion, cell signalling and waste export. For pathogenic strains, many of these outer membrane proteins (OMPs) also serve as virulence factors for nutrient scavenging and evasion of host defence mechanisms. OMPs are unique membrane proteins in that they have a β-barrel fold and can range in size from 8 to 26 strands, yet can still serve many different functions for the cell. Despite their essential roles in cell survival and virulence, the exact mechanism for the biogenesis of these OMPs into the OM has remained largely unknown. However, the past decade has witnessed significant progress towards unravelling the pathways and mechanisms necessary for moulding a nascent polypeptide into a functional OMP within the OM. Here, we will review some of these recent discoveries that have advanced our understanding of the biogenesis of OMPs in Gram-negative bacteria, starting with synthesis in the cytoplasm to folding and insertion into the OM.  相似文献   

12.
The outer membranes of Gram-negative bacteria, mitochondria, and chloroplasts all contain transmembrane β-barrel proteins. These β-barrel proteins serve essential functions in cargo transport and signaling and are also vital for membrane biogenesis. They have also been adapted to perform a diverse set of important cellular functions including acting as porins, transporters, enzymes, virulence factors and receptors. Recent structures of transmembrane β-barrels include that of a full length autotransporter (EstA), a bacterial heme transporter complex (HasR), a bacterial porin in complex with several ligands (PorB), and the mitochondrial voltage-dependent anion channel (VDAC) from both mouse and human. These represent only a few of the interesting structures of β-barrel membrane proteins recently elucidated. However, they demonstrate many of the advancements made within the field of transmembrane protein structure in the past few years.  相似文献   

13.
Gram-negative bacteria need to maintain the integrity of their outer membrane while also regulating the secretion of toxins and other macromolecules. A variety of dedicated outer membrane proteins (OMPs) facilitate this process. Recent structural work has shown that some of these proteins adopt classical β-barrel transmembrane structures and rely on structural changes within the barrel lumen to allow passage of substrate proteins. Other secretion systems have OMP components which use transmembrane α-helices and appear to function in a different way. Here we review a selection of recent structural studies which have major ramifications for our understanding of the passage of macromolecules across the outer membrane.  相似文献   

14.
Naturally crystalline porin in the outer membrane of Bordetella pertussis   总被引:6,自引:0,他引:6  
The Gram-negative bacterium Bordetella pertussis is the agent responsible for whooping-cough, and much interest has focused on the functions, structures and immunological properties of the molecules exposed at its outer surface. We have found by electron microscopy that cells of two strains of B. pertussis are covered with a crystalline surface lattice. This lattice is not an extrinsic layer of high molecular weight glycoproteins, such as occur on many other bacteria, but is a natural crystal of an intrinsic membrane protein of 40,000 Mr. This molecule has been shown to be an anion-selective member of an extensive family of proteins ("porins") that render Gram-negative outer membranes permeable to solutes of up to approximately 650 Mr. Computer image processing reveals a trimeric channel-like structure that closely resembles other porins visualized in artificial arrays after treatment with detergents, but in a novel (p2) crystal form. This correlation provides a "missing link" between earlier structural studies based on artificial arrays of porins (of undefined physiological status), and membrane-permeabilization experiments with solubilized porins (in undefined structural states). For the strains characterized so far, crystallinity of the porin surface lattice shows an intriguing correlation with nonpathogenicity.  相似文献   

15.
The outer membrane is the first line of contact between Gram-negative bacteria and their external environment. Embedded in the outer membrane are integral outer membrane proteins (OMPs) that perform a diverse range of tasks. OMPs are synthesized in the cytoplasm and are translocated across the inner membrane and probably diffuse through the periplasm before they are inserted into the outer membrane in a folded and biologically active form. Passage through the periplasm presents a number of challenges, due to the hydrophobic nature of the OMPs and the choice of membranes into which they can insert. Recently, a number of periplasmic proteins and one OMP have been shown to play a role in OMP biogenesis. In this review, we describe what is known about these folding factors and how they function in a biological context. In particular, we focus on how they interact with the OMPs at the molecular level and present a comprehensive overview of data relating to a possible effect on OMP folding yield and kinetics. Furthermore, we discuss the role of lipo-chaperones, i.e. lipopolysaccharide and phospholipids, in OMP folding. Important advances have clearly been made in the field, but much work remains to be done, particularly in terms of describing the biophysical basis for the chaperone-OMP interactions which so intricately regulate OMP biogenesis.  相似文献   

16.
β-Barrel proteins found in the outer membrane of Gram-negative bacteria serve a variety of cellular functions. Proper folding and assembly of these proteins are essential for the viability of bacteria and can also play an important role in virulence. The β-barrel assembly machinery (BAM) complex, which is responsible for the proper assembly of β-barrels into the outer membrane of Gram-negative bacteria, has been the focus of many recent studies. This review summarizes the significant progress that has been made toward understanding the structure and function of the bacterial BAM complex.  相似文献   

17.
Francisella tularensis is a Gram-negative intracellular coccobacillus and the causative agent of the zoonotic disease tularemia. When compared with other bacterial pathogens, the extremely low infectious dose (<10 CFU), rapid disease progression, and high morbidity and mortality rates suggest that the virulent strains of Francisella encode for novel virulence factors. Surface-exposed molecules, namely outer membrane proteins (OMPs), have been shown to promote bacterial host cell binding, entry, intracellular survival, virulence and immune evasion. The relevance for studying OMPs is further underscored by the fact that they can serve as protective vaccines against a number of bacterial diseases. Whereas OMPs can be extracted from gram-negative bacteria through bulk membrane extraction techniques, including sonication of cells followed by centrifugation and/or detergent extraction, these preparations are often contaminated with periplasmic and/or cytoplasmic (inner) membrane (IM) contaminants. For years, the "gold standard" method for the biochemical and biophysical separation of gram-negative IM and outer membranes (OM) has been to subject bacteria to spheroplasting and osmotic lysis, followed by sucrose density gradient centrifugation. Once layered on a sucrose gradient, OMs can be separated from IMs based on the differences in buoyant densities, believed to be predicated largely on the presence of lipopolysaccharide (LPS) in the OM. Here, we describe a rigorous and optimized method to extract, enrich, and isolate F. tularensis outer membranes and their associated OMPs.  相似文献   

18.
Outer membrane proteins (OMPs) of Gram-negative bacteria have diverse functions and are directly involved in the interaction with various environments encountered by pathogenic organisms. Thus, OMPs represent important virulence factors and play essential roles in bacterial adaptation to host niches, which are usually hostile to invading pathogens. Understanding the structure and functions of bacterial OMPs will facilitate the design of antimicrobial drugs and vaccines. In this paper, we will present a brief review on OMPs that contribute to bacterial adaptive responses including iron uptake, antimicrobial peptide resistance, serum resistance, and drug/bile resistance.  相似文献   

19.
Kulp A  Kuehn MJ 《Journal of bacteriology》2011,193(22):6179-6186
Gram-negative bacteria react to misfolded proteins in the envelope through a myriad of different stress response pathways. This cohort of pathways allows the bacteria to specifically respond to different types of damage, and many of these have been discovered to have key roles in the virulence of bacterial pathogens. Misfolded outer membrane proteins (OMPs) are typically recognized by the σ(E) pathway, a highly conserved envelope stress response pathway. We examined the features of misfolded OMPs with respect to their ability to generate envelope stress responses. We determined that the secondary structure, particularly the potential to form β strands, is critical to inducing the σ(E) response in an RseB-dependent manner. The sequence of the potential β-strand motif modulates the strength of the σ(E) response generated by the constructs. By understanding the details of how such stress response pathways are activated, we can gain a greater understanding of how bacteria survive in harsh environments.  相似文献   

20.
Molecular basis of bacterial outer membrane permeability revisited.   总被引:13,自引:0,他引:13  
Gram-negative bacteria characteristically are surrounded by an additional membrane layer, the outer membrane. Although outer membrane components often play important roles in the interaction of symbiotic or pathogenic bacteria with their host organisms, the major role of this membrane must usually be to serve as a permeability barrier to prevent the entry of noxious compounds and at the same time to allow the influx of nutrient molecules. This review summarizes the development in the field since our previous review (H. Nikaido and M. Vaara, Microbiol. Rev. 49:1-32, 1985) was published. With the discovery of protein channels, structural knowledge enables us to understand in molecular detail how porins, specific channels, TonB-linked receptors, and other proteins function. We are now beginning to see how the export of large proteins occurs across the outer membrane. With our knowledge of the lipopolysaccharide-phospholipid asymmetric bilayer of the outer membrane, we are finally beginning to understand how this bilayer can retard the entry of lipophilic compounds, owing to our increasing knowledge about the chemistry of lipopolysaccharide from diverse organisms and the way in which lipopolysaccharide structure is modified by environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号