首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cardiac myocytes isolated and cultured from 11 day chick embryos present a Ca(2+)-dependent regulatory volume decrease (RVD) when exposed to hyposmotic stimulus. The RVD of myocytes from different embryonic stages were analyzed to evaluate their physiological performance through development. Among the several embryonic stages analyzed (6, 11, 16 and 19 days) only 19 day cardiac myocytes present a greater RVD when compared with 11 day (considered as control), the other ages showed no difference in the regulatory response. As it is known that RVD is Ca(2+) dependent, we decided to investigate the transient free Ca(2+) response during the hyposmotic swelling of the 11 and 19 day stages. The 11 day cardiac myocyte showed a transient 40% increase in intracellular free Ca(2+) when submitted to hyposmotic solutions, and the free Ca(2+) returned to baseline levels while the cells remained in hyposmotic buffer. However, the intracellular free Ca(2+) transient in the 19 day cells during hyposmotic challenge increases 100% and instead of returning to baseline levels, declines to 55% above control, well after the 11 day transient has returned to baseline. Also, quantitative fluorescence microscopy revealed that 19 day cardiac myocytes have more sarcoplasmic reticulum (SR) Ca(2+) ATPase sites per cell as compared to the 11 day cells. Our findings suggest that 19 day cells have more developed intracellular Ca(2+) stores (SR). By evoking the mechanism of Ca(2+) induced Ca(2+) release, the cells have more free Ca(2+) available for signaling the RVD during hyposmotic swelling.  相似文献   

2.
A decrease in external osmolarity results in cell swelling and the immediate activation of a mechanism to restore cell volume, known as regulatory volume decrease (RVD). When exposed to a gradual osmolarity decrease (GODE), some cells do not swell. This reflects the operation of an active regulatory process known as isovolumetric regulation (IVR). The mechanisms underlying IVR appear similar to those activated during RVD, namely the extrusion of K+, Cl-, amino acids, and other organic molecules. A previous study has documented IVR in cerebellar granule neurons, parallel to an early efflux of taurine and Cl-, whereas K+ efflux is delayed. In this work we briefly review the importance of amino acids in the mechanisms of cell volume control in the brain, with emphasis on IVR. We also present experiments showing the response to GODE in cerebellar astrocytes. The currents activated during GODE, recorded in the whole-cell configuration of the patch clamp technique, indicate the early activation of an anion current, followed by a more delayed cation current. A correlation between the time course of amino acid efflux during GODE and the occurrence or not of IVR in various cell types, suggest the importance of these osmolytes in the volume regulatory process in this model.  相似文献   

3.
In numerous animal cells, experimental manipulations that increase the intracellular free Ca2+ concentration induce cell volume reduction. This may occur under isosmotic conditions, e.g. when external Ca2+ (Ca(o)) is replaced by Mg2+ (42) or during exposure to hypoosmotic conditions (i.e. regulatory volume decrease, RVD) in the presence of Ca(o). We determined the osmolytes responsible for volume reduction under isosmotic and hypoosmotic conditions in barnacle muscle cells. Organic osmolytes (i.e. free amino acids and methylamines) and inorganic ions accounted for approximately 78% and 22% of the intracellular isosmotic activity, respectively. Isosmotic Ca(o) removal induced a net loss of KCI (with a ratio of 1K:1Cl) and free amino acids (FAA, mainly glycine and taurine). During RVD. the same ions (but in a proportion of 2K:1Cl) and FAA were lost. Since RVD was accompanied by extracellular alkalinization, the 2K:1Cl loss may be explained by the presence of a K+/H+ exchanger (or K+-OH- co-transporter) or Cl-/OH- exchanger. The lack of RVD in the absence of Ca(o) cannot be attributed to the loss of intracellular osmolytes during isosmotic Ca(o) removal because addition of Ca(o) during cell swelling promoted RVD.  相似文献   

4.
Both attached and suspended HeLa cells swelled in a medium of a hypotonic osmolality of 235 mosmol/kg H2O. When the osmolality was further decreased to 166 mosmol/kg H2O, attached cells instantly swelled and then rapidly lost water and K+, followed by slow gains of them. Suspended cells instantly swelled and then K+ loss and regulatory volume decrease (RVD) occurred. Neither 0.1 mM ouabain nor 10 mM TEA changed the water loss of attached cells, whereas ouabain inhibited RVD of suspended cells. Quinine (1 mM) inhibited water losses from both cells and comparison of the losses implies stronger activation of K+ channel in attached cells than in suspended cells. Omission of medium Ca2+ or addition of 10 mM BaCl2 inhibited RVD in part. These results suggest that hyposmotic stress induces net water loss from attached cells, associated with K+ release through the Ca(2+)-dependent K+ channel. Suspended cells osmotically swell, followed by RVD with K+ and Na+ releases through the K+ channel and Na(+)-pump, respectively. The different patterns of volume changes may relate to the difference of activity or time of activation of the K+ channel between both cells.  相似文献   

5.
The response of isolated digestive cells of the digestive gland of Mytilus galloprovincialis to hypotonic shock was studied using videometric methods. The isolated cells exposed to a rapid change (from 1100 to 800 mosmol kg?1) of the bathing solution osmolality swelled but thereafter underwent a regulatory volume decrease (RVD), tending to recover the original size. When the hypotonic stress was applied in the presence of quinine and glibenclamide, known inhibitors of swelling activated ion channels, the cells did not exhibit an RVD response; in addition, they showed a larger increase in size in respect to control cells. These observations suggest that the digestive cells of the digestive gland have the machinery to cope with the hyposmotic shock allowing them to exhibit a small but significant RVD preventing an excessive increase in cell size. The pharmacological treatment of digestive cells during the RVD experiments suggests that cell volume is regulated by K+ and Cl? efflux followed by an obliged water efflux from the cell. The involvement of organic osmolytes such as taurine and betaine seems to be excluded by NMR measurement on digestive cells. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
The osmotic process plays an important role in controlling the distribution of water across cell membranes and thus the cell volume. A system was designed to detect the volume changes of an endothelial cell monolayer when cells were exposed to media with altered osmolalities. Electrodes housed in a flow chamber measured the resistance of ionic media flowing over a cultured cell layer. Assuming the cell membrane acts as an electrical insulator, volume changes of the cell layer can be calculated from the corresponding changes in chamber resistance. The media used in the experiments had osmolalities in the range 120-630 mmol/kg. When cells were exposed to hypertonic media, there was rapid shrinkage with an approximate 30% reduction in total cell volume for a twofold increase in osmolality. On exposure to hypotonic media, the cells initially swelled with an approximate 20% volume increase for a decrease in osmolality by half. With sustained exposure to low osmolality media, there was a gradual and partial return of cell volume towards isotonic values that started 10 minutes after and was complete within 30 minutes of the osmolality alteration. This finding suggests regulatory volume decrease (RVD); however, no regulatory volume increase (RVI) was observed with the continued exposure to hypertonic media over 45 minutes.  相似文献   

7.
The majority of mammalian cells demonstrate regulatory volume decrease (RVD) following swelling caused by hyposmotic exposure. A critical signal initiating RVD is activation of nucleotide receptors by ATP. Elevated extracellular ATP in response to cytotoxic cell swelling during pathological conditions also may initiate loss of taurine and other intracellular osmolytes via anion channels. This study characterizes neuronal ATP-activated anion current and explores its role in net loss of amino acid osmolytes. To isolate anion currents, we used CsCl as the major electrolyte in patch electrode and bath solutions and blocked residual cation currents with NiCl(2) and tetraethylammonium. Anion currents were activated by extracellular ATP with a K(m) of 70 microM and increased over fourfold during several minutes of ATP exposure, reaching a maximum after 9.0 min (SD 4.2). The currents were blocked by inhibitors of nucleotide receptors and volume-regulated anion channels (VRAC). Currents showed outward rectification and inactivation at highly depolarizing membrane potentials, characteristics of swelling-activated anion currents. P2X agonists failed to activate the anion current, and an inhibitor of P2X receptors did not block the effect of ATP. Furthermore, current activation was observed with extracellular ADP and 2-(methylthio)adenosine 5'-diphosphate, a P2Y(1) receptor-specific agonist. Much less current activation was observed with extracellular UTP, suggesting the response is mediated predominantly by P2Y(1) receptors. ATP caused a dose-dependent loss of taurine and alanine that could be blocked by inhibitors of VRAC. ATP did not inhibit the taurine uptake transporter. Thus extracellular ATP triggers a loss of intracellular organic osmolytes via activation of anion channels. This mechanism may facilitate neuronal volume homeostasis during cytotoxic edema.  相似文献   

8.
Isolated nonperfused proximal tubules maintained their cell volume at a constant level (isovolumetric regulation, IVR), when osmolality of the bathing medium was gradually decreased from 290 to 190 mosm at 1.5 and 5.0 mosm/min. Hypotonic IVR was blocked by inhibiting the Na(+)-K+ pump with ouabain (10(-4) M) when osmolality was decreased at 1.5 or 5 mosm/min. Concentration-dependent inhibition of cell volume maintenance was observed in the presence of the K+ channel blocker barium (10(-3)-10(-2) M) when osmolality decreased at 5 mosm/min. Quinine (10(-3) M), another K+ channel blocker, also inhibited IVR at osmolality decreases of 1.5 and 5 mosm/min. These results suggest that the maintenance of constant cell volume during gradual hypoosmotic exposure involves mechanisms that depend on intact Na-K-ATPase and the controlled loss of intracellular K+.  相似文献   

9.
The effect of hypotonic shock on cultured pavement gill cells from freshwater (FW)- and seawater (SW)-adapted trout was investigated. Exposure to 2/3rd strength Ringer solution produced an increase in cell volume followed by a slow regulatory volume decrease (RVD). The hypotonic challenge also induced a biphasic increase in cytosolic Ca(2+) with an initial peak followed by a sustained plateau. Absence of external Ca(2+) did not modify cell volume under isotonic conditions, but inhibited RVD after hypotonic shock. [Ca(2+)](i) response to hypotonicity was also partially inhibited in Ca-free bathing solutions. Similar results were obtained whether using cultured gill cells prepared from FW or SW fishes. When comparing freshly isolated cells with cultured gill cells, a similar Ca(2+) signalling response to hypotonic shock was observed regardless of the presence or absence of Ca(2+) in the solution. In conclusion, gill pavement cells in primary culture are able to regulate cell volume after a cell swelling and express a RVD response associated with an intracellular calcium increase. A similar response to a hypotonic shock was recorded for cultured gill cells collected from FW and SW trout. Finally, we showed that calcium responses were physiologically relevant as comparable results were observed with freshly isolated cells exposed to hypoosmotic shock.  相似文献   

10.
Volume changes of cardiac tissue under hyperosmotic stress in Rana catesbeiana were characterized by the identification of the osmolytes involved and the possible regulatory processes activated by both abrupt and gradual changes in media osmolality (from 220 to 280mosmol/kg H(2)O). Slices of R. catesbeiana cardiac tissue were subjected to hyperosmotic shock, and total tissue Na(+), K(+), Cl(-) and ninhydrin-positive substances were measured. Volume changes were also induced in the presence of transport inhibitors to identify osmolyte pathways. The results show a maximum volume loss to 90.86+/-0.73% of the original volume (measured as 9% decrease in wet weight) during abrupt hyperosmotic shock. However, during a gradual osmotic challenge the volume was never significantly different from that of the control. During both types of hyperosmotic shock, we observed an increase in Na(+) but no significant change in Cl(-) contents. Additionally, we found no change in ninhydrin-positive substances during any osmotic challenge. Pharmacological analyses suggest the involvement of the Na(+)/H(+) exchanger, and perhaps the HCO(3)(-)/Cl(-) exchanger. There is indirect evidence for decrease in Na(+)/K(+)-ATPase activity. The Na(+) fluxes seem to result from Mg(2+) signaling, as saline rich in Mg(2+) enhances the regulatory volume increase, followed by a higher intracellular Na(+) content. The volume maintenance mechanisms activated during the gradual osmotic change are similar to that activated by abrupt osmotic shock.  相似文献   

11.
Immunocytochemical techniques indicate that the uninhibited activity of protein kinase C alpha and protein kinase C beta are necessary for a normal regulatory volume decrease (RVD) response of cultured chick embryo cardiomyocytes subjected to a hyposmotic environment. Antibodies against protein kinase C isoforms alpha, beta, gamma and epsilon were introduced into the cultured myocytes using a developed streptolysin-O (SLO) permeabilization technique that allows the targeted cells to accumulate large biomolecules without perturbing their normal physiological state. The loaded cells were then tested for their ability to RVD when submitted to hypo-osmotic stimulus. Results show that exposing the cultured cells to SLO in the presence of antibodies against protein kinase C alpha and beta, prior to volume challenge, significantly slows the RVD rate. Additional experiments that combined anti-alpha and anti-beta antibodies in the same exposure media did not result in a significantly different rate than the anti-alpha or anti-beta rates alone. The evidence gained in this study is in agreement with previous work in the cultured chick embryo cardiomyocyte that report the involvement of a calcium dependent protein kinase C in the signal transduction pathway of the RVD.  相似文献   

12.
Cellular function and control of volume-regulated anion channels   总被引:7,自引:0,他引:7  
Restoration of cell volume after cell swelling in mammalian cells is achieved by the loss of solutes (K+, Cl, and organic osmolytes) and the subsequent osmotically driven efflux of water. This process is generally known as regulatory volume decrease (RVD). One pathway for the swelling induced loss of Cl (and also organic osmolytes) during RVD is the volume-regulated anion channel (VRAC). In this review, we discuss the physiological role and cellular control of VRAC. We will first highlight evidence that VRAC is more than a volume regulator and that it participates in other fundamental cellular processes such as cell proliferation and apoptosis. The second part concentrates on the Rho/Rho kinase/myosin phosphorylation cascade and on compartmentalization in caveolae as modulators of the signal transduction cascade that controls VRAC gating in vascular endothelial cells.  相似文献   

13.
Cell swelling, regulatory volume decrease (RVD), volume-sensitive Cl (Cl swell) current and taurine efflux after exposure to high concentrations of urea were characterized in fibroblasts Swiss 3T3, and results compared to those elicited by hyposmotic (30%) swelling. Urea 70, 100, and 150 mM linearly increased cell volume (8.25%, 10.6%, and 15.7%), by a phloretin-inhibitable process. This was followed by RVD by which cells exposed to 70, 100, or 150 mM urea recovered 27.6%, 38.95, and 74.1% of their original volume, respectively. Hyposmolarity (30%) led to a volume increase of 25.9% and recovered volume in 32.5%. 3H-taurine efflux was increased by urea with a sigmoid pattern, as 9.5%, 18.9%, 71.5%, and 89% of the labeled taurine pool was released by 70, 100, 150, or 200 mM urea, respectively. Only about 11% of taurine was released by 30% hyposmolarity reduction in spite of the high increase in cell volume. Urea-induced taurine efflux was suppressed by NPPB (100 μM) and markedly reduced by the tyrosine kinase-general blocker AG18. The Cl swell current was more rapidly activated and higher in amplitude in the hyposmotic than in the isosmotic/urea condition (urea 150 mM), but this was not sufficient to accomplish an efficient RVD. These results showed that at similar volume increase, cells swollen by urea showed higher taurine efflux, lower Cl swell current and more efficient RVD, than in those swollen by hyposmolarity. The correlation found between RVD efficiency and taurine efflux suggest a prominent role for organic over ionic osmolytes for RVD evoked by urea in isosmotic conditions.  相似文献   

14.
Regulatory volume decrease (RVD) is a protective mechanism that allows mammalian cells to restore their volume when exposed to a hypotonic environment. A key component of RVD is the release of K+, Cl, and organic osmolytes, such as taurine, which then drives osmotic water efflux. Previous experiments have indicated that caveolin-1, a coat protein of caveolae microdomains in the plasma membrane, promotes the swelling-induced Cl current (ICl,swell) through volume-regulated anion channels. However, it is not known whether the stimulation by caveolin-1 is restricted to the release of Cl or whether it also affects the swelling-induced release of other components, such as organic osmolytes. To address this problem, we have studied ICl,swell and the hypotonicity-induced release of taurine and ATP in wild-type Caco-2 cells that are caveolin-1 deficient and in stably transfected Caco-2 cells that express caveolin-1. Electrophysiological characterization of wild-type and stably transfected Caco-2 showed that caveolin-1 promoted ICl,swell, but not cystic fibrosis transmembrane conductance regulator currents. Furthermore, caveolin-1 expression stimulated the hypotonicity-induced release of taurine and ATP in stably transfected Caco-2 cells grown as a monolayer. Interestingly, the effect of caveolin-1 was polarized because only the release at the basolateral membrane, but not at the apical membrane, was increased. It is therefore concluded that caveolin-1 facilitates the hypotonicity-induced release of Cl, taurine, and ATP, and that in polarized epithelial cells, the effect of caveolin-1 is compartmentalized to the basolateral membrane. caveolae; osmolyte; epithelial cell; chloride channel  相似文献   

15.
An early cellular response of osteoblasts to swelling is plasma membrane depolarization, accompanied by a transient increase in intracellular calcium ([Ca2+]i), which initiates regulatory volume decrease (RVD). The authors have previously demonstrated a hypotonically induced depolarization of the osteoblast plasma membrane, sufficient to open L-type Ca channels and mediate Ca2+ influx. Herein is described the initiation of RVD in UMR-106.01 cells, mediated by hypotonically induced [Ca2+]i transients resulting from the activation of specific isoforms of L-type Ca channels. The authors further demonstrate that substrate interaction determines which specific alpha1 Ca channel subunit isoform predominates and mediates Ca2+ entry and RVD. Swelling-induced [Ca2+]i transients, and RVD in cells grown on a type I collagen matrix, are inhibited by removal of Ca from extracellular solutions, dihydropyridines, and antisense oligodeoxynucleotides directed exclusively to the alpha1C isoform of the L-type Ca channel. Ca2+ transients and RVD in cells grown on untreated glass cover slips were inhibited by similar maneuvers, but only by antisense oligodeoxynucleotides directed to the alpha1S isoform of the L-type Ca channel. This represents the first molecular identification of the Ca channels that transduce the initiation signal for RVD by osteoblastic cells.  相似文献   

16.
17.
Cultured cerebellar granule neurons exposed to gradual reductions in osmolarity (-1.8 mOsm/min) maintained constant volume up to -50% external osmolarity (pi(o)), showing the occurrence of isovolumetric regulation (IVR). Amino acids, Cl-, and K+ contributed at different phases of IVR, with early efflux threshold for [3H]taurine, D-[3H]aspartate (as marker for glutamate) of pi(o) -2% and -19%, respectively, and more delayed thresholds of -30% for [3H]glycine and -25% and -29%, respectively, for Cl- (125I) and K+ (86Rb). Taurine seems preferentially involved in IVR, showing the lowest threshold, the highest efflux rate (five-fold over other amino acids) and the largest cell content decrease. Taurine and Cl- efflux were abolished by niflumic acid and 86Rb by 15 mM Ba2+. Niflumic acid essentially prevented IVR in all ranges of pi(o). Cl--free medium impaired IVR when pi(o) decreased to -24% and Ba2+ blocked it only at a late phase of -30% pi(o). These results indicate that in cerebellar granule neurons: (i) IVR is an active process of volume regulation accomplished by efflux of intracellular osmolytes; (ii) the volume regulation operating at small changes of pi(o) is fully accounted for by mechanisms sensitive to niflumic acid, with contributions of both Cl- and amino acids, particularly taurine; (iii) Cl- contribution to IVR is delayed with respect to other niflumic acid-sensitive osmolyte fluxes (osmolarity threshold of -25% pi(o)); and (iv), K+ fluxes do not contribute to IVR until a late phase (< -30% pi(o)).  相似文献   

18.
The effects of hypotonic shock on cell volume, taurine influx and efflux were examined in the human erythroleukemic cell line K562. Cells exposed to hypotonic solutions exhibited a regulatory volume decrease (RVD) following rapid increases in cell volume. Cell swelling was associated with a increased taurine influx and efflux. The volume-activated taurine pathway was Na+-independent, and increased in parallel with increasing cell volume. The chloride channel blocker, 2,5-dichlorodiphenylamine-2-carboxylic acid (DCDPC), completely blocked the volume-activated taurine influx and efflux, while [dihydroin-denyl]oxy]alkanoic acids (DIOA) and 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), an anion exchanger and anion channel blocker, respectively, also inhibited significantly. These results suggest that taurine transport is increased in response to hypotonic stress, which may be mediated via a volume-activated, DCDPC-sensitive anion channel. © 1996 Wiley-Liss, Inc.  相似文献   

19.
20.
Cell volume regulation has not been completely clarified in Coelenterates. The present investigation focuses on cell volume regulation under anisosmotic conditions, both hyposmotic and hypertonic, and on the underlying signals in nematocytes isolated from the Coelenterate Aiptasia mutabilis living in sea water. Nematocytes, once isolated from acontia, that were submitted to either hyposmotic (35%) and hypertonic shock (45%) show RVD and RVI capabilities, respectively. In order to ascertain the role of Ca2+ in triggering such regulatory mechanisms and the possible involvement of cytoskeleton components, tests were performed by employing either Ca2+ free conditions, Gd3+ as Ca2+ channel blockers, TFP as calmodulin inhibitor, colchicine as microtubule inhibitor and cytochalasin B as microfilament polymerization inhibitor. Results show that isolated nematocytes of A. mutabilis can regulate their volume upon both hyposmotic and hypertonic challenge. Ca2+ both from external medium and from internal stores is needed to perform RVD mechanisms, whereas, intracellular Ca2+ seems to be mainly involved in RVI. Moreover cytoskeletal components may play an important role since a significant RVD and RVI inhibition was observed in treated cells. On the basis of our observations further studies are warranted to further verify the role of signals, including phosphatases and phosphorylases, in cell volume regulation of primitive eukaryotic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号