首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 746 毫秒
1.
Developmental expression of stress response genes in Theobroma cacao leaves and their response to Nep1 and a compatible infection by Phytophthora megakarya were studied. Ten genes were selected to represent genes involved in defense (TcCaf-1, TcGlu1,3, TcChiB, TcCou-1, and TcPer-1), gene regulation (TcWRKY-1 and TcORFX-1), cell wall development (TcCou-1, TcPer-1, and TcGlu-1), or energy production (TcLhca-1 and TcrbcS). Leaf development was separated into unexpanded (UE), young red (YR), immature green (IG), and mature green (MG). Our data indicates that the constitutive defense mechanisms used by cacao leaves differ between different developmental stages. TcWRKY-1 and TcChiB were highly expressed in MG leaves, and TcPer-1, TcGlu-1, and TcCou-1 were highly expressed in YR leaves. TcGlu1,3 was highly expressed in UE and YR leaves, TcCaf-1 was highly expressed in UE leaves, and TcLhca-1 and TcrbcS were highly expressed in IG and MG leaves. NEP1 encodes the necrosis inducing protein Nep1 produced by Fusarium oxysporum and has orthologs in Phytophthora species. Nep1 caused cellular necrosis on MG leaves and young pods within 24 h of application. Necrosis was observed on YR leaves 10 days after treatment. Expression of TcWRKY-1, TcORFX-1, TcPer-1, and TcGlu-1 was enhanced and TcLhca-1 and TcrbcS were repressed in MG leaves after Nep1 treatment. Expression of TcWRKY-1 and TcORFX-1 was enhanced in YR leaves after Nep1 treatment. Infection of MG leaf disks by P. megakarya zoospores enhanced expression of TcGlu-1, TcWRKY-1, and TcPer-1 and repressed expression of TcChiB, TcLhca-1 and TcrbcS. Five of the six genes that were responsive to Nep1 were responsive to infection by P. megakarya. Susceptibility of T. cacao to P. megakarya includes altered plant gene expression and phytotoxic molecules like Nep1 may contribute to susceptibility.  相似文献   

2.
Phytophthora megakarya, the causative agent of cacao black pod disease in West African countries causes an extensive loss of yield. In this study we have analyzed 4 libraries of ESTs derived from Phytophthora megakarya infected cocoa leaf and pod tissues. Totally 6379 redundant sequences were retrieved from ESTtik database and EST processing was performed using seqclean tool. Clustering and assembling using CAP3 generated 3333 non-redundant (907 contigs and 2426 singletons) sequences. The primary sequence analysis of 3333 non-redundant sequences showed that the GC percentage was 42.7 and the sequence length ranged from 101 - 2576 nucleotides. Further, functional analysis (Blast, Interproscan, Gene ontology and KEGG search) were executed and 1230 orthologous genes were annotated. Totally 272 enzymes corresponding to 114 metabolic pathways were identified. Functional annotation revealed that most of the sequences are related to molecular function, stress response and biological processes. The annotated enzymes are aldehyde dehydrogenase (E.C: 1.2.1.3), catalase (E.C: 1.11.1.6), acetyl-CoA C-acetyltransferase (E.C: 2.3.1.9), threonine ammonia-lyase (E.C: 4.3.1.19), acetolactate synthase (E.C: 2.2.1.6), O-methyltransferase (E.C: 2.1.1.68) which play an important role in amino acid biosynthesis and phenyl propanoid biosynthesis. All this information was stored in MySQL database management system to be used in future for reconstruction of biotic stress response pathway in cocoa.  相似文献   

3.
Polyamines (PAs) are related to many physiological processes, including soil drought stress. Two yellow lupin ‘Morocco 4’ (drought tolerant) and ‘Taper’ (drought sensitive) were exposed to soil drought for 2 weeks. The half of the examined plants were additionally sprayed with a solution of polyamine biosynthesis inhibitor—dl-α-difluoromethylarginine (DFMA). Yellow lupin leaves showed a 19% increase and seeds a 54% decrease in the total PA contents. The seeds contained fourfold less PAs than the leaves under drought conditions. The highest amount of spermidine and lack of agmatine were found in the leaves, while in the seeds the highest content of spermine and the presence of agmatine was confirmed. The use of DFMA under drought conditions decreased the content of spermine in ‘Morocco 4’ and ‘Taper’ (41 and 19%, respectively) and spermidine in ‘Taper’ (by 13%), as well as reduced two out of three of the yield components. More tolerant ‘Morocco 4’, after DFMA treatment was characterized by a higher spermidine and spermine content and a smaller decrease in yield components compared to the less tolerant ‘Taper’. Simultaneously subjecting plants to soil drought and DFMA treatment caused in ‘Morocco 4’ a decline in the number of pods and seeds per plant and seeds dry weight per plant (64, 50 and 54%, respectively), while in ‘Taper’ a reduction of the number of pods per plant and seeds per pod (32 and 27%, respectively) was observed. These results confirm that PAs are involved in yellow lupin tolerance and may play a protective function under soil drought conditions.  相似文献   

4.
? Premise of the study: Phytophthora megakarya is the agent of black pod disease of cacao and is the main pathogen of this crop in Africa. Population genetic studies are required to investigate how this pathogen emerged. To this end, we developed 12 novel polymorphic microsatellite markers for P. megakarya. ? Methods and Results: Microsatellite sequences were obtained by pyrosequencing of multiplex-enriched libraries. Candidate loci with di- or trinucleotide motifs were selected, and primer pairs were tested with nine P. megakarya isolates. The 12 most polymorphic and unambiguous loci were selected to develop three multiplex PCR pools. The total number of alleles varied from two to nine, depending on loci, and higher than expected heterozygosity was observed. ? Conclusions: These markers were used for population genetic studies of P. megakarya in Cameroon and for comparison with reference strains from West Africa. This is the first time that microsatellite markers have been developed for P. megakarya.  相似文献   

5.
Changes in putrescine, spermidine and spermine concentrations in potato ( Solanum tuberosum L.) leaves stressed either with cadmium, with the fungal pathogen Phytophthora infestans Mont. (de Bary) or with both simultaneously were investigated. The leaves of two cultivars, Bintje and Bzura, respectively susceptible and resistant to P. infestans were examined. The level of of putrescine did not change under any stress conditions. Cadmium stress caused at least a 2-fold increase in spermidine and spermine concentrations in susceptible leaves. In resistant leaves there was a 4-fold increase in spermidine and a decrease in spermine. The pathogenic stress produced similar changes in polyamine concentrations, i. e. with differences between the cultivars. The double stress induced antagonistic alterations in the concentrations of spermidine and spermine.  相似文献   

6.
Cellular polyamine content often changes in response to abiotic stresses. However, its physiological relevance is unknown. We found that an Arabidopsis mutant plant (acl5/spms), which cannot produce spermine, is hypersensitive to high salt. Examination of drought sensitivity of the mutant and comparison with wild type plants indicated hypersensitivity to drought. This phenotype was cured by spermine pretreatment but not by the other polyamines putrescine and spermidine, suggesting that drought-hypersensitivity exhibited by the mutant is due to spermine deficiency. The water loss rate of wild type and mutant plants were similar until 20 min after onset of dehydration stress, but after a longer exposure the rate in mutant plants was higher than in wild type plants. Consistent with this result, the stomata of the mutant leaves remained open while in wild type leaves they closed. Based on the collected data, we discuss a role for spermine in response to drought stress.  相似文献   

7.
8.
Involvement of polyamines in the drought resistance of rice   总被引:2,自引:0,他引:2  
This study investigated whether and how polyamines (PAs) in rice (Oryza sativa L.) plants are involved in drought resistance. Six rice cultivars differing in drought resistance were used and subjected to well-watered and water-stressed treatments during their reproductive period. The activities of arginine decarboxylase, S-adenosyl-L-methionine decarboxylase, and spermidine (Spd) synthase in the leaves were significantly enhanced by water stress, in good agreement with the increase in putrescine (Put), Spd, and spermine (Spm) contents there. The increased contents of free Spd, free Spm, and insoluble-conjugated Put under water stress were significantly correlated with the yield maintenance ratio (the ratio of grain yield under water-stressed conditions to grain yield under well-watered conditions) of the cultivars. Free Put at an early stage of water stress positively, whereas at a later stage negatively, correlated with the yield maintenance ratio. No significant differences were observed in soluble-conjugated PAs and insoluble-conjugated Spd and Spm among the cultivars. Free PAs showed significant accumulation when leaf water potentials reached -0.51 MPa to -0.62 MPa for the drought-resistant cultivars and -0.70 MPa to -0.84 MPa for the drought-susceptible ones. The results suggest that rice has a large capacity to enhance PA biosynthesis in leaves in response to water stress. The role of PAs in plant defence to water stress varies with PA forms and stress stages. In adapting to drought it would be good for rice to have the physiological traits of higher levels of free Spd/free Spm and insoluble-conjugated Put, as well as early accumulation of free PAs, under water stress.  相似文献   

9.
10.
The distribution of the endogenous PA fractions throughout the entire perennial woody grapevine (Vitis vinifera L.) plant was studied, along with the expression profiles of the PA anabolic and catabolic genes and their substrates and secondary metabolites. Putrescine fractions increased with increasing leaf age, although the expression of its biosynthetic enzymes Arg and Orn decarboxylases decreased. Orn transport from young organs dramatically enhanced putrescine biosynthesis in older tissues, via the Orn decarboxylase pathway. S-adenosylmethionine decarboxylase and spermidine synthase genes were down-regulated during development in a tissue/organ-specific manner, as were spermidine and spermine levels. In contrast, amine oxidases, peroxidases and phenolics increased from the youngest to the fully developed vascular tissues; they also increased from the peripheral regions of leaves to the petioles. Hydrogen peroxide generated by amine oxidases accumulated for the covalent linkage of proteins via peroxidases during lignification. These results could be valuable for addressing further questions on the role of PAs in plant development.  相似文献   

11.
12.
After fruit ripening, many fruit-tree species undergo massive natural fruit abscission. Olive (Olea europaea L.) is a stone-fruit with cultivars such as Picual (PIC) and Arbequina (ARB) which differ in mature fruit abscission potential. Ethylene (ET) is associated with abscission, but its role during mature fruit abscission remains largely uncharacterized. The present study investigates the possible roles of ET and polyamine (PA) during mature fruit abscission by modulating genes involved in the ET signalling and biosynthesis pathways in the abscission zone (AZ) of both cultivars. Five ET-related genes (OeACS2, OeACO2, OeCTR1, OeERS1, and OeEIL2) were isolated in the AZ and adjacent cells (AZ-AC), and their expression in various olive organs and during mature fruit abscission, in relation to interactions between ET and PA and the expression induction of these genes, was determined. OeACS2, OeACO2, and OeEIL2 were found to be the only genes that were up-regulated in association with mature fruit abscission. Using the inhibition of ET and PA biosynthesis, it is demonstrated that OeACS2 and OeEIL2 expression are under the negative control of PA while ET induces their expression in AZ-AC. Furthermore, mature fruit abscission depressed nitric oxide (NO) production present mainly in the epidermal cells and xylem of the AZ. Also, NO production was differentially responsive to ET, PA, and different inhibitors. Taken together, the results indicate that PA-dependent ET signalling and biosynthesis pathways participate, at least partially, during mature fruit abscission, and that endogenous NO and 1-aminocyclopropane-1-carboxylic acid maintain an inverse correlation, suggesting an antagonistic action of NO and ET in abscission signalling.  相似文献   

13.
14.
15.
Gil-Amado JA  Gomez-Jimenez MC 《Planta》2012,235(6):1221-1237
Exogenous ethylene and some inhibitors of polyamine biosynthesis can induce mature-fruit abscission in olive, which could be associated with decreased nitric oxide production as a signaling molecule. Whether H?O? also plays a signaling role in mature-fruit abscission is unknown. The possible involvement of H?O? and polyamine in ethylene-induced mature-fruit abscission was examined in the abscission zone and adjacent cells of two olive cultivars. Endogenous H?O? showed an increase in the abscission zone during mature-fruit abscission, suggesting that accumulated H?O? may participate in abscission signaling. On the other hand, we followed the expression of two genes involved in the polyamine biosynthesis pathway during mature-fruit abscission and in response to ethylene or inhibitors of ethylene and polyamine. OeSAMDC1 and OeSPDS1 were expressed differentially within and between the abscission zones of the two cultivars. OeSAMDC1 showed slightly lower expression in association with mature-fruit abscission. Furthermore, our data show that exogenous ethylene or inhibitors of polyamine encourage the free putrescine pool and decrease the soluble-conjugated spermidine, spermine, homospermidine, and cadaverine in the olive abscission zone, while ethylene inhibition by CoCl? increases these soluble conjugates, but does not affect free putrescine. Although the impact of these treatments on polyamine metabolism depends on the cultivar, the results confirm that the mature-fruit abscission may be accompanied by an inhibition of S-adenosyl methionine decarboxylase activity, and the promotion of putrescine synthesis in olive abscission zone, suggesting that endogenous putrescine may play a complementary role to ethylene in the normal course of mature-fruit abscission.  相似文献   

16.
Morphological and biochemical changes in plant cells are known as important events for adaptation to stress. In this study, in Ctenanthe setosa leaves to which polyamines were applied during drought stress, changes in the activity of peroxidase, reducing sugar, proline and soluble protein levels were investigated. The three common polyamines, putrescine, spermidine and spermine were exogenously treated through the leaves. The polyamines were sprayed onto the leaves at 5 x 10(-5) M. In the leaves to which polyamines were applied the peroxidase activity decreased, soluble protein increased. Also, it was determined that putrescine and spermidine caused an increase in the amount of proline and in reducing sugar. However, increase was not observed in the leaves to which spermine was applied. In addition, we observed an increase in the activity of peroxidase, proline and reducing sugar levels, and a decrease in soluble protein level in the control ones and the leaves to which polyamines were applied during drought stress. As a result, the effect of polyamine on leaf rolling may be explained through the contribution to osmotic adjustment of the increase in proline, reducing sugar and soluble protein contents.  相似文献   

17.
Li  Fupeng  Wu  Baoduo  Yan  Lin  Qin  Xiaowei  Lai  Jianxiong 《Journal of plant research》2021,134(6):1323-1334
Journal of Plant Research - The Theobroma cacao presents a wide diversity in pod color among different cultivars. Although flavonoid biosynthesis has been studied in many plants, molecular...  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号