首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein tyrosine kinases and phosphatases in the nervous system.   总被引:4,自引:0,他引:4  
Evidence in the past year has provided support for a prominent role of tyrosine phosphorylation in the regulation of neuronal function. The discovery that many novel forms of protein tyrosine kinases and phosphatases are expressed in the brain has revealed that the regulation of tyrosine phosphorylation is highly complex. The recent identification of substrate proteins in the brain for the protein tyrosine kinases and phosphatases has begun to clarify the functional role of tyrosine phosphorylation in the development and modulation of the nervous system.  相似文献   

2.
The regulation of tyrosine phosphorylation represents a key mechanism governing cell proliferation. In fibroblasts, inputs from both growth factor and extracellular matrix receptors are required for cell division. Triggering such receptors induces a wave of tyrosine phosphorylation on key signaling molecules, culminating in the activation of cyclin-dependent kinases and cell cycle progression. In general, protein tyrosine kinases stimulate, while protein tyrosine phosphatases inhibit, such cell proliferation pathways. The role of protein tyrosine kinases in mitogenesis has been extensively studied, but the identity and targets of the protein tyrosine phosphatases that regulate cell growth are not well described. In this review, I will survey recent advances in the identification and regulation of protein tyrosine phosphatases that downregulate cell proliferation. J. Cell. Physiol. 180:173–181, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

3.
Miller DT  Read R  Rusconi J  Cagan RL 《Gene》2000,243(1-2):1-9
The fine modulation of tyrosine phosphorylation by protein tyrosine phosphatases and protein tyrosine kinases is a key regulatory mechanism for many cell signaling pathways active during development. In a screen for genes with interesting expression patterns in the developing Drosophila pupal retina, we identified a novel pair of protein tyrosine phosphatases that exhibit an expression pattern suggesting a role in multiple steps of Drosophila neurogenesis. Together, these phosphatases define the primo locus. Their sequence is approx. 50% identical to each other and to low-molecular-weight protein tyrosine phosphatases (LMW-PTPs) identified in other species. Little is understood of the biological role of LMW-PTPs, and the powerful tools available in Drosophila should provide important insight into their role in signaling and development.  相似文献   

4.
5.
Protein-tyrosine phosphatases are key regulators of protein tyrosine phosphorylation. More than merely terminating the pathways initiated by protein-tyrosine kinases, phosphatases are active participants in many signaling pathways. Signals involving tyrosine phosphorylation are frequently generated in response to cell-matrix adhesion. In addition, high levels of protein tyrosine phosphorylation generally promote disassembly or turnover of adhesions. In this brief review, we will discuss the role of protein-tyrosine phosphatases in cell-matrix adhesions.  相似文献   

6.
Zheng Wu  Ming Lu  Tingting Li 《Amino acids》2014,46(8):1919-1928
Tyrosine phosphorylation plays crucial roles in numerous physiological processes. The level of phosphorylation state depends on the combined action of protein tyrosine kinases and protein tyrosine phosphatases. Detection of possible phosphorylation and dephosphorylation sites can provide useful information to the functional studies of relevant proteins. Several studies have focused on the identification of protein tyrosine kinase substrates. However, compared with protein tyrosine kinases, the prediction of protein tyrosine phosphatase substrates involved in the balance of protein phosphorylation level falls behind. This paper described a method that utilized the k-nearest neighbor algorithm to identity the substrate sites of three protein tyrosine phosphatases based on the sequence features of manually collected dephosphorylation sites. In the performance evaluation, both sensitivities and specificities could reach above 75 % for all three protein tyrosine phosphatases. Finally, the method was applied on a set of known tyrosine phosphorylation sites to search for candidate substrates.  相似文献   

7.
Obesity is a worldwide epidemic as well as being a major risk factor for diabetes, cardiovascular diseases and several types of cancers. Obesity is mainly due to the overgrowth of adipose tissue arising from an imbalance between energy intake and energy expenditure. Adipose tissue, primarily composed of adipocytes, plays a key role in maintaining whole body energy homeostasis. In view of the treatment of obesity and obesity-related diseases, it is critical to understand the detailed signal transduction mechanisms of adipogenic differentiation. Adipogenic differentiation is tightly regulated by many key signal cascades, including insulin signaling. These signal cascades generally transfer or amplify the signal by using serial tyrosine phosphorylations. Thus, protein tyrosine kinases and protein tyrosine phosphatases are closely related to adipogenic differentiation. Compared to protein tyrosine kinases, protein tyrosine phosphatases have received little attention in adipogenic differentiation. This review aims to highlight the involvement of protein tyrosine phosphatases in adipogenic differentiation and the possibility of protein tyrosine phosphatases as drugs to target obesity. [BMB Reports 2012; 45(12): 700-706]  相似文献   

8.
The aim of this investigation was to study the putative role of protein phosphorylation in interleukin-1 (IL-1) induced signal transduction in insulin producing cells. For this purpose, insulin producing RINm-5F cells were exposed to IL-1 for 7 hours with or without different agonists and antagonists to protein kinases and phosphatases and the production of nitrite was subsequently determined. It has been shown earlier that IL-1 will stimulate the production of nitrite in such cells. It was found that EDTA, TPA and staurosporine did not affect IL-1 induced nitrite production. However, the tyrosine kinase antagonist tyrphostin inhibited, whereas sodium orthovanadate, okadaic acid and cyclosporin A, all inhibitors of protein phosphatases, potentiated IL-1 induced nitrite release to the medium. The tyrosine kinase antagonist genistein potentiated at a low concentration and inhibited at a high concentration the IL-1 effect. It is concluded that protein phosphorylation events, mediated either by protein kinases or phosphatases on both tyrosine and serine/threonine residues, may mediate or antagonize IL-1 induced signal transduction in insulin producing cells.  相似文献   

9.
Protein tyrosine phosphorylation has been implicated in the growth and functional responses of hematopoietic cells. Recently, approaches have been developed to characterize the protein tyrosine phosphatases that may contribute to regulation of protein tyrosine phosphorylation. One novel protein tyrosine phosphatase was expressed predominantly in hematopoietic cells. Hematopoietic cell phosphatase encodes a 68-kDa protein that contains a single phosphatase conserved domain. Unlike other known protein tyrosine phosphatases, hematopoietic cell phosphatase contains two src homology 2 domains. We also cloned the human homolog, which has 95% amino acid sequence identity. Both the murine and human gene products have tyrosine-specific phosphatase activity, and both are expressed predominantly in hematopoietic cells. Importantly, the human gene maps to chromosome 12 region p12-p13. This region is associated with rearrangements in approximately 10% of cases of acute lymphocytic leukemia in children.  相似文献   

10.
PTP1B: from the sidelines to the front lines!   总被引:13,自引:0,他引:13  
Tonks NK 《FEBS letters》2003,546(1):140-148
Although initially viewed as housekeeping enzymes, research over the last 15 years has revealed that the protein tyrosine phosphatases (PTPs) are critical regulators of tyrosine phosphorylation-dependent signaling events and may represent novel targets for therapeutic intervention in a variety of human diseases. In this review I will describe some of the key advances in the characterization of the structure, regulation and function of the prototypic PTP, PTP1B, and illustrate how our understanding of the properties of this enzyme has revealed principles that apply to the PTP family as a whole.  相似文献   

11.
The role of tyrosine phosphorylation in cell transformation has been well established. It has been proposed that protein tyrosine phosphatases (PTPases) may be capable of dephosphorylating critical substrates involved in the transformation process, suggesting that they represent a tumor suppressor family of enzymes. Indeed, recent work showed that overexpression of some PTPases in malignant cells counteracted the action of oncogenic tyrosine kinases although overexpression of other forms of these enzymes increased tumorigenicity. The work described herein has provided some insight into the action, both antagonistic and synergistic, of the kinases and phosphatases on cell growth and transformation.  相似文献   

12.
Phosphatases are well known to carry out important functions via counter activity of kinases and they serve as mechanism for dephosphorylating the monophosphate esters from the phosphorylated serine, threonine, tyrosine and histidine residues. The biological relevance of phosphatases could be explored further employing newer technologies and models. Caenorhabditis elegans is a powerful genetic model system that bears significant homology with humans, hence providing with a precious tool towards studying important signalling pathways. We carried out the present study to catalogue the C. elegans protein phosphatome, referred here as ‘C.el phosphatome’ and annotated the corresponding dataset. We further classified these phosphatases based on presence of catalytic conserved motif; GDxHG, GDxVDRG, GNHE, RxxD, DGxxG, DG, GxxDN for Ser/Thr phosphatases, HC(x)5 R for tyrosine phosphatases and DxDxT/V for aspartate based phosphatases. Bioinformatics tool DAVID was employed to decipher the biological relevance of phosphatases. Our findings show Ser/Thr phosphatases (114), Tyr phosphatases (121) and Asp phosphatases (0) in C. elegans genome based on the hallmark sequence identification. Amongst them, 34 and 57 Ser/Thr and Tyr phosphatases respectively contain the catalytic motif. This catalogue offers a precious tool for further studies towards understanding important biological processes and disease conditions.  相似文献   

13.
Ion channels are regulated by protein phosphorylation and dephosphorylation of serine, threonine, and tyrosine residues. Evidence for the latter process, tyrosine phosphorylation, has increased substantially since this topic was last reviewed. In this review, we present a comprehensive summary and synthesis of the literature regarding the mechanism and function of ion channel regulation by protein tyrosine kinases and phosphatases. Coverage includes the majority of voltage-gated, ligand-gated, and second messenger-gated channels as well as several types of channels that have not yet been cloned, including store-operated Ca2+ channels, nonselective cation channels, and epithelial Na+ and Cl- channels. Additionally, we discuss the critical roles that channel-associated scaffolding proteins may play in localizing protein tyrosine kinases and phosphatases to the vicinity of ion channels.  相似文献   

14.
Microinjection and scrape-loading have been used to load cells in culture with soluble protein tyrosine phosphatases (FTPs). The introduction of protein tyrosine phosphatases into cells caused a rapid (within 5 minutes) decrease in tyrosine phosphorylation of major tyrosine phosphorylated substrates, including the focal adhesion kinase and paxillin. This decrease was detected both by blotting whole cell lysates with anti-phosphotyrosine antibodies and visualizing the phosphotyrosine in focal adhesions by immunofluorescence microscopy. After 30 minutes, many of the cells injected with tyrosine phosphatases revealed disruption of focal adhesions and stress fibers. To determine whether this disruption was due to the dephosphorylation of FAK and its substrates in focal adhesions, we have compared the effects of protein tyrosine phosphatase microinjection with the effects of displacing FAK from focal adhesions by microinjection of a dominant negative FAK construct. Although both procedures resulted in a marked decrease in the level of phosphotyrosine in focal adhesions, disruption of focal adhesions and stress fibers only occurred in cells loaded with exogenous protein tyrosine phosphatases. These results lead us to conclude that although tyrosine phosphorylation regulates focal adhesion and stress fiber stability, this does not involve FAK nor does it appear to involve tyrosine-phosphorylated proteins within focal adhesions. The critical tyrosine phosphorylation event is upstream of focal adhesions, a likely target being in the Rho pathway that regulates the formation of stress fibers and focal adhesions.  相似文献   

15.
Src homology 2 (SH2) domains mediate protein-protein interactions by recognizing short phosphotyrosyl (pY) peptide motifs in their partner proteins. Protein tyrosine phosphatases (PTPs) catalyze the dephosphorylation of pY proteins, counteracting the protein tyrosine kinases. Both types of proteins exhibit primary sequence specificity, which plays at least a partial role in dictating their physiological interacting partners or substrates. A combinatorial peptide library method has been developed to systematically assess the sequence specificity of SH2 domains and PTPs. A "one-bead-one-compound" pY peptide library is synthesized on 90-microm TentaGel beads and screened against an SH2 domain or PTP of interest for binding or catalysis. The beads that carry the tightest binding sequences against the SH2 domain or the most efficient substrates of the PTP are selected by an enzyme-linked assay and individually sequenced by a partial Edman degradation/mass spectrometry technique. The combinatorial method has been applied to determine the sequence specificity of 8 SH2 domains from Src and Csk kinases, adaptor protein Grb2, and phosphatases SHP-1, SHP-2, and SHIP1 and a prototypical PTP, PTP1B.  相似文献   

16.
The myeloid restricted membrane glycoprotein, CD33, is a member of the recently characterized "sialic acid-binding immunoglobulin-related lectin" family. Although CD33 can mediate sialic acid-dependent cell interactions as a recombinant protein, its function in myeloid cells has yet to be determined. Since CD33 contains two potential immunoreceptor tyrosine-based inhibition motifs in its cytoplasmic tail, we investigated whether it might act as a signaling receptor in myeloid cells. Tyrosine phosphorylation of CD33 in myeloid cell lines was stimulated by cell surface cross-linking or by pervanadate, and inhibited by PP2, a specific inhibitor of Src family tyrosine kinases. Phosphorylated CD33 recruited both the protein-tyrosine phosphatases, SHP-1 and SHP-2. CD33 was dephosphorylated in vitro by the co-immunoprecipitated tyrosine phosphatases, suggesting that it might also be an in vivo substrate. The first CD33 phosphotyrosine motif is dominant in CD33-SHP-1/SHP-2 interactions, since mutating tyrosine 340 in a CD33-cytoplasmic tail fusion protein significantly reduced binding to SHP-1 and SHP-2 in THP-1 lysates, while mutation of tyrosine 358 had no effect. Furthermore, the NH2-terminal Src homology 2 domain of SHP-1 and SHP-2, believed to be essential for phosphatase activation, selectively bound a CD33 phosphopeptide containing tyrosine 340 but not one containing tyrosine 358. Finally, mutation of tyrosine 340 increased red blood cell binding by CD33 expressed in COS cells. Hence, CD33 signaling through selective recruitment of SHP-1/SHP-2 may modulate its ligand(s) binding activity.  相似文献   

17.
The aim of this review is to provide a synthesis of the published experimental data on protein tyrosine phosphatases from parasitic protozoa, in silico analysis based on the availability of completed genomes and to place available data for individual phosphatases from different unicellular parasites into the comparative and evolutionary context. We analysed the complement of protein tyrosine phosphatases (PTP) in several species of unicellular parasites that belong to Apicomplexa (Plasmodium; Cryptosporidium, Babesia, Theileria, and Toxoplasma), kinetoplastids (Leishmania and Trypanosoma spp.), as well as Entamoeba histolytica, Giardia lamblia, Trichomonas vaginalis and a microsporidium Encephalitozoon cuniculi. The analysis shows distinct distribution of the known families of tyrosine phosphatases in different species. Protozoan tyrosine phosphatases show considerable levels of divergence compared with their mammalian homologues, both in terms of sequence similarity between the catalytic domains and the structure of their flanking domains. This potentially makes them suitable targets for development of specific inhibitors with minimal effects on physiology of mammalian hosts.  相似文献   

18.
Protein tyrosine phosphorylation, mediated by the balanced action of tyrosine kinases and phosphatases, contributes to the regulation of the growth, migration, and invasion of normal and malignant cells. Among tyrosine phosphatases, low molecular weight protein tyrosine phosphatases (LMW-PTP) have been recognized as a possible "positive factor" in tumour onset and progression. The aim of this work was to assess whether LMW-PTP are differentially expressed in normal and malignant tissues. Using real-time PCR analysis we evaluated the expression levels of total LMW-PTP mRNA in surgical samples of breast, colon and lung cancers (63, 60, and 58, respectively), and in their paired adjacent not affected tissues. Moreover, the same analysis was carried out on a group of neuroblastomas (25 cases). Significant correlations between LMW-PTP overexpression and the most common clinical-pathological features of cancers exist. In colon cancer and neuroblastoma increased total LMW-PTP mRNA expression correlates with unfavourable outcome. While LMW-PTP mRNA expression increases in tumour samples, the relative contribution of the different isoforms does not change. Our findings indicate that LMW-PTP can be considered an oncogene as it is overexpressed in different tumour types and suggests that LMW-PTP enhanced expression is generally prognostic for a more aggressive cancer.  相似文献   

19.
In the free-living amoeba Amoeba proteus (strain B), after PAAG disk-electrophoresis of the homogenate supernatant, at using 1-naphthyl phosphate as a substrate and pH 9.0, three forms of phosphatase activity were revealed; they were arbitrarily called "fast", "intermediate", and "slow" phosphatases. The fast phosphatase has been established to be a fraction of lysosomal acid phosphatase that preserves some low activity at alkaline pH. The question as to which particular class the intermediate phosphatase belongs to has remained unanswered: it can be both acid phosphatase and protein tyrosine phosphatase (PTP). Based on data of inhibitor analysis, large substrate specificity, results of experiments with reactivation by Zn ions after inactivation with EDTA, other than in the fast and intermediate phosphatases localization in the amoeba cell, it is concluded that only slow phosphatase can be classified as alkaline phosphatase (EC 3.1.3.1).  相似文献   

20.
Smooth muscle contractility and protein tyrosine phosphorylation   总被引:1,自引:0,他引:1  
During the last 5 years several studies have documented an involvement of protein tyrosine kinases (PTKs) in smooth muscle contraction and Ca2+mobilization. Most of these studies have utilized highly selective inhibitors of PTKs, genistein and tyrphostin and have shown that these inhibitors attenuated smooth muscle contraction induced by growth factors - epidermal growth factor (EGF) and platelet derived growth factor (PDGF) and several vasoactive peptides. It has also been demonstrated that inhibitors of protein tyrosine phosphatases (PTPases) such as vanadate and pervanadate mimic growth factors and vasoactive peptides in causing the contraction of smooth muscle. In this brief review, we have summarized some of the recent observations suggesting a possible link between protein tyrosine phosphorylation pathway and smooth muscle contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号