首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibition of rotavirus and enterovirus infections by tea extracts.   总被引:2,自引:0,他引:2  
Epigallocatechin gallate from green tea and theaflavin digallate from black tea inhibited infections of cultured rhesus monkey kidney MA 104 cells with rotaviruses and enteroviruses. Their antiviral effects were maximally induced when directly added to virus, and their pre- and post-treatment of the cells produced much weak antiviral activity. Antiviral activity of the extracts therefore seems to be attributable to interference with virus adsorption.  相似文献   

2.
It has been recently reported that tea flavanols, including epigallocatechin gallate (EGCG), efficiently inhibit glucosidase II in liver microsomes. Since glucosidase II plays a central role in glycoprotein processing and quality control in the endoplasmic reticulum we investigated the possible contribution of endoplasmic reticulum stress and unfolded protein response (UPR) to the pro-apoptotic activity of EGCG in mouse hepatoma cells. The enzyme activity measurements using 4-methylumbelliferyl-alpha-d-glucopyranoside substrate confirmed the inhibition of glucosidase II in intact and alamethicin-permeabilized cells. EGCG treatment caused a progressive elevation of apoptotic activity as assessed by annexin staining. The induction of CHOP/GADD153, the cleavage of procaspase-12 and the increasing phosphorylation of eIF2alpha were revealed in these cells by Western blot analysis while the induction of endoplasmic reticulum chaperones and foldases was not observed. Time- and concentration-dependent depletion of the endoplasmic reticulum calcium stores was also demonstrated in the EGCG-treated cells by single-cell fluorescent detection. The massive alterations in the endoplasmic reticulum morphology revealed by fluorescent microscopy further supported the development of UPR. Collectively, our results indicate that EGCG interferes with protein processing in the endoplasmic reticulum presumably due to inhibition of glucosidase II and that the stress induces an incomplete unfolded protein response with dominantly pro-apoptotic components.  相似文献   

3.
Catechins, flavanols found at high levels in green tea, have received significant attention due to their potential health benefits related to cancer, autoimmunity and metabolic disease, but little is known about the mechanisms by which these compounds affect cellular behavior. Here, we assess whether the model organism Dictyostelium discoideum is a useful tool with which to characterize the effects of catechins. Epigallocatechin gallate (EGCG), the most abundant and potent catechin in green tea, has significant effects on the Dictyostelium life cycle. In the presence of EGCG aggregation is delayed, cells do not stream and development is typically stalled at the loose aggregate stage. The developmental effects very likely result from defects in motility, as EGCG reduces both random movement and chemotaxis of Dictyostelium amoebae. These results suggest that catechins and their derivatives may be useful tools with which to better understand cell motility and development in Dictyostelium and that this organism is a useful model to further characterize the activities of catechins.  相似文献   

4.
Green tea and (-)-epigallocatechin gallate (EGCG: one of the main components of green tea) are reported to have cancer-preventive activity in humans. A previous SAR study of EGCG and derivatives indicated that a galloyl group is essential for the activity. To test this hypothesis, we synthesized various alkyl gallate and gallamide derivatives and evaluated their antiproliferative effects on human leukemia HL-60 cells. Dodecyl 3,4,5-trihydroxybenzoate (6c) showed the most potent activity, being more potent than EGCG. To clarify the molecular mechanism of the antiproliferative action, we investigated the effects of 6c on various factors. Compound 6c was found to induce apoptosis mediated by endoplasmic reticulum (ER)-stress-related caspase-12. Upregulation of gadd-153, an ER-stress marker protein, was also observed. These results indicate that 6c induced apoptosis via the ER-stress-related pathway.  相似文献   

5.
Epigallocatechin gallate, a major component of green tea polyphenols, protects against the oxidation of fat-soluble antioxidants including lutein. The current study determined the effect of a relatively high but a dietary achievable dose of lutein or lutein plus green tea extract on antioxidant status. Healthy subjects (50–70 years) were randomly assigned to one of two groups (n=20 in each group): (1) a lutein (12 mg/day) supplemented group or (2) a lutein (12 mg/day) plus green tea extract (200 mg/day) supplemented group. After 2 weeks of run-in period consuming less than two servings of lightly colored fruits and vegetables in their diet, each group was treated for 112 days while on their customary regular diets. Plasma carotenoids including lutein, tocopherols, flavanols and ascorbic acid were analyzed by HPLC-UVD and HPLC-electrochemical detector systems; total antioxidant capacity by fluorometry; lipid peroxidation by malondialdehyde using a HPLC system with a fluorescent detector and by total hydroxyoctadecadienoic acids using a GC/MS. Plasma lutein, total carotenoids and ascorbic acid concentrations of subjects in either the lutein group or the lutein plus green tea extract group were significantly increased (P<.05) at 4 weeks and throughout the 16-week study period. However, no significant changes from baseline in any biomarker of overall antioxidant activity or lipid peroxidation of the subjects were seen in either group. Our results indicate that an increase of antioxidant concentrations within a range that could readily be achieved in a healthful diet does not affect in vivo antioxidant status in normal healthy subjects when sufficient amounts of antioxidants already exist.  相似文献   

6.
Tea catechins and related polyphenols as anti-cancer agents   总被引:6,自引:0,他引:6  
Epigallocatechin gallate (EGCg) and theaflavins, a major constituent of green tea infusion and the constituents of black tea, respectively, were found to inhibit matrix metalloproteinases (MMPs) which are intimately associated with tumor invasion and metastasis. EGCg and related polyphenols exhibited apoptosis-inducing activity for several cancer cell lines including human stomach and colon cancer cells. Comparison of the activity of these compounds revealed the importance of the number and the steric disposition of hydroxyl groups. A pyrogallol-type structure in a molecule is a minimum requirement for apoptosis induction of catechin compounds and that in the B ring has an important role in the activity. These data would provide useful information for designing anti-cancer agents on the basis of anti-inhibitory activity for MMPs and/or apoptosis-inducing activity.  相似文献   

7.
Lill G  Voit S  Schrör K  Weber AA 《FEBS letters》2003,546(2-3):265-270
Epigallocatechin gallate (EGCG), a major component of green tea, has been previously shown to inhibit platelet aggregation. The effects of other green tea catechins on platelet function are not known. Pre-incubation with EGCG concentration-dependently inhibited thrombin-induced aggregation and phosphorylation of p38 mitogen-activated protein kinase and extracellular signal-regulated kinases-1/2. In contrast EGCG stimulated tyrosine phosphorylation of platelet proteins, including Syk and SLP-76 but inhibited phosphorylation of focal adhesion kinase. Other catechins did not inhibit platelet aggregation. Interestingly, when EGCG was added to stirred platelets, a tyrosine kinase-dependent stimulation of platelet aggregation was observed. The two other catechins containing a galloyl group in the 3' position (catechin gallate, epicatechin gallate) also stimulated platelet aggregation, while catechins without a galloyl group (catechin, epicatechin) or the catechin with a galloyl group in the 2' position (epigallocatechin) did not.  相似文献   

8.
Green tea catechins inhibit the function of organic anion transporting polypeptides (OATPs) that mediate the uptake of a diverse group of drugs and endogenous compounds into cells. The present study was aimed at investigating the effect of green tea and its most abundant catechin epigallocatechin gallate (EGCG) on the transport activity of several drug transporters expressed in enterocytes, hepatocytes and renal proximal tubular cells such as OATPs, organic cation transporters (OCTs), multidrug and toxin extrusion proteins (MATEs), and P-glycoprotein (P-gp). Uptake of the typical substrates metformin for OCTs and MATEs and bromosulphophthalein (BSP) and atorvastatin for OATPs was measured in the absence and presence of a commercially available green tea and EGCG. Transcellular transport of digoxin, a typical substrate of P-gp, was measured over 4 hours in the absence and presence of green tea or EGCG in Caco-2 cell monolayers. OCT1-, OCT2-, MATE1- and MATE2-K-mediated metformin uptake was significantly reduced in the presence of green tea and EGCG (P < 0.05). BSP net uptake by OATP1B1 and OATP1B3 was inhibited by green tea [IC50 2.6% (v/v) and 0.39% (v/v), respectively]. Green tea also inhibited OATP1B1- and OATP1B3-mediated atorvastatin net uptake with IC50 values of 1.9% (v/v) and 1.0% (v/v), respectively. Basolateral to apical transport of digoxin was significantly decreased in the presence of green tea and EGCG. These findings indicate that green tea and EGCG inhibit multiple drug transporters in vitro. Further studies are necessary to investigate the effects of green tea on prototoypical substrates of these transporters in humans, in particular on substrates of hepatic uptake transporters (e.g. statins) as well as on P-glycoprotein substrates.  相似文献   

9.
Regulation of intestinal glucose transport by tea catechins   总被引:3,自引:0,他引:3  
Intestinal glucose uptake is mainly performed by its specific transporters, such as SGLT 1, GLUT 2 and 5 expressed in the intestinal epithelial cells. By using human intestinal epithelial Caco-2 cells we observed that intestinal glucose uptake was markedly inhibited by tea extracts. While several substances in green tea seem to be involved in this inhibition, catechins play the major role and epicatechin gallate (ECg) showed the highest inhibitory activity. Since our Caco-2 cells did not express enough amount of SGLT 1, the most abundant intestinal glucose transporter, the effect of ECg on SGLT 1 was evaluated by using brush border membrane vesicles obtained from the rabbit small intestine. ECg inhibited SGLT 1 in a competitive manner, although ECg itself was not transported via the glucose transporters. These results suggest that tea catechins could play a role in controlling the dietary glucose uptake at the intestinal tract and possibly contribute to blood glucose homeostasis.  相似文献   

10.
To understand the hypocholesterolemic activity of green tea, our in vitro studies screened the relative efficacy of two structurally distinct green tea catechins, epicatechin (EC) and epigallocatechin gallate (EGCG), on apolipoprotein B-100 (apoB) and lipid production using a well established human hepatoma cell-line, HepG2, as the model system. This study showed that HepG2 cells pretreated with EC and EGCG for 8 h exerted a dose-dependent inhibitory effect on apoB secretion. Total protein and albumin synthesis and secretion were unaffected indicating the effects on apoB secretion to be specific. Under lipid-rich conditions, apoB secretion was markedly reduced by EGCG and to a lesser extent by EC at 50 M. Mechanistic study showed that tea catechins inhibited apoB secretion via a proteasome-independent pathway as indicated by a lack of response to N-acetyl-leucyl-leucyl-norleucinal (ALLN), a proteasome inhibitor. The effect on apoB secretion was also found to be independent of lipid biosynthesis. In summary, the data suggest that EGCG in contrast to EC is a potent inhibitor of apoB secretion. The results indicate that the gallate moiety in the catechin molecule may result in a beneficial effect on lipid metabolism in terms of apoB secretion.  相似文献   

11.
The polyphenolic dimers, epicatechin-4beta-8-catechin (B1), epicatechin-4beta-8-epicatechin (B2), catechin-4beta-8-catechin (B3), catechin-4beta-8-epicatechin (B4), and the gallate ester epicatechin-4beta-8-epicatechin gallate (B'2G) were isolated from grape seeds, and theaflavins and theafulvins from black tea brews. The ability of these naturally-occurring polyphenols to afford protection against the genotoxicity of the heterocyclic amine 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) was compared with that of the monomeric tea flavanols, (+)-catechin (C), (-)-epicatechin (EC), (-)-epicatechin gallate (ECG), (-)-epigallocatechin (EGC) and (-)-epigallocatechin gallate (EGCG). Genotoxic activity was evaluated in human peripheral lymphocytes using the Comet assay. At the concentration range of 1-100 microM, neither the monomeric nor the dimeric flavanols prevented the lymphocyte DNA damage induced by Trp-P-2. In contrast, both of the black tea polyphenols, theafulvins and theaflavins, at a dose range of 0.1-0.5 mg/ml, prevented, in a concentration-dependent manner, the DNA damage elicited by Trp-P-2. Finally, neither the monomeric and dimeric polyphenols (100 microM) nor the theafulvins and theaflavins (0.5mg/ml) caused any DNA damage in the human lymphocytes. These studies illustrate that black tea theafulvins and theaflavins, if absorbed intact, may contribute to the anticarcinogenic potential associated with black tea intake.  相似文献   

12.
13.
The molecular properties of the receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin in the mouse hepatoma cell line Hepa 1c1c7 were investigated. The receptor was found to represent a highly asymmetrical molecule with a sedimentation coefficient, s20,w, of approximately 8 S, a Stokes radius of 7-8 nm, and a calculated Mr approximately equal to 260,000-300,000. In comparison, the Hepa 1c1c7 glucocorticoid receptor in analogy to the glucocorticoid receptor in general as well as the C57BL/6 mouse and rat hepatic dioxin receptors are molecules with an s20,w value of 4-5 S, a Stokes radius of approximately 6 nm, and a calculated Mr approximately equal to 100,000. In the presence of 20 mM sodium molybdate, a large Mr approximately equal to 270,000-310,000 form of the Hepa 1c1c7 glucocorticoid receptor is stabilized which is hydrodynamically indistinguishable from the Mr approximately equal to 260,000-300,000 Hepa 1c1c7 dioxin receptor. Sodium molybdate does not have any effect on the molecular properties of the Hepa 1c1c7 dioxin receptor. In conclusion, the large form of dioxin receptor present in Hepa 1c1c7 mouse hepatoma cells in the absence of sodium molybdate is strikingly similar to molybdate-stabilized steroid hormone receptors as well as the molybdate-stabilized form of the dioxin receptor previously demonstrated in rat hepatic cytosol. Therefore, the Hepa 1c1c7 dioxin receptor might offer an interesting model for studies on the structure and function of Mr approximately equal to 300,000 forms of soluble receptors.  相似文献   

14.
Choline kinase catalyzes the first rate-limiting step in the pathway of biosynthesis of phosphatidylcholine. This enzyme was shown previously to be induced in liver by treatment of rats with polycyclic aromatic hydrocarbons (Ishidate et al. (1980) Biochem. Biophys. Res. Commun. 96, 946-952). The present study was undertaken to determine whether choline kinase in the murine hepatoma cell line, Hepa 1c1c7, is inducible by aromatic hydrocarbons and, if so, whether this induction is mediated by the aromatic hydrocarbon receptor. Treatment of Hepa 1c1c7 cells with 10 microM beta-naphthoflavone resulted in a 1.6-fold increase of choline kinase activity, but no response was seen when the cells were exposed to either 5.0 microM benzo[a]pyrene or 1.0 nM 2.3,7,8-tetrachlorodibenzo-p-doxin, both potent inducers of aryl hydrocarbon hydroxylase. Cell line variants with either deficient or elevated aromatic hydrocarbon receptors showed no increase in choline kinase activity following treatment with any of the polycyclic aromatic hydrocarbons. These results are not consistent with a role for the aromatic hydrocarbon receptor in increased choline kinase activity in Hepa 1c1c7 cells.  相似文献   

15.
We investigated the phagocytosis-enhancing activity of green tea polyphenols, such as epigallocatechin gallate (EGCG), epigallocatechin (EGC), epicatechin gallate (ECG), epicatechin (EC) catechin (+C) and strictinin, using VD3-differentiated HL60 cells. EGCG, EGC, ECG and strictinin, but not EC and +C, increased the phagocytic activity of macrophage-like cells, and a caspase inhibitor significantly inhibited phagocytic activities. These results suggest that the pyrogallol-type structure in green tea polyphenols may be important for enhancement of the phagocytic activity through caspase signaling pathways.  相似文献   

16.
Epigallocatechin gallate (EGCG) is a major type of green tea polyphenols and is known to have cancer prevention effect. MicroRNAs (miRNAs) are 19 to 25 nucleotides and are believed to be important in gene regulation. In the present study, the influence of EGCG on the expressions of miRNAs in human cancer cells was investigated as this has not yet been reported. By miRNA microarray analysis, EGCG treatment was found to modify the expressions of some of the miRNAs in human hepatocellular carcinoma HepG2 cells, 13 were up-regulated and 48 were down-regulated. miR-16 is one of the miRNAs up-regulated by EGCG and one of its target genes is confirmed to be the anti-apoptotic protein Bcl-2. EGCG treatment induced apoptosis and down-regulated Bcl-2 in HepG2 cells. Transfection with anti-miR-16 inhibitor suppressed miR-16 expression and counteracted the EGCG effects on Bcl-2 down-regulation and also induction of apoptosis in cells. Results from the present study confirm the role of miR-16 in mediating the apoptotic effect of EGCG and also support the importance of miRNAs in the regulation of the biological activity of EGCG.  相似文献   

17.
Young anthers excised from closed tea flower buds ( Camellia sinensis L.) were stained as fresh tissues with p-dimethylaminocinnamaldehyde reagent to localize flavanols associated with nuclei and chromosomes, apart from those flavanols stored in vacuoles. This staining reagent yields a blue colour for flavanols. In the nonsporogenic somatic cells of developing anthers, flavanols were found to be attached to chromosomes at all mitotic stages. Male meiosis started at a bud size of about 3.5 mm in diameter in pollen mother cells which displayed generally more or less pronounced blue nuclei and cytoplasm. The meiotic divisions from prophase I to telophase II were characterized by blue stained nuclei and chromosomes, but within the cytoplasm there was, if any, a random and very poor reaction for flavanols. Metaphase and telophase of meiotic divisions showed maximally condensed chromosomes staining dark blue. Early in telophase II, the cytoplasm was again stained blue; this faded at late tetrad stage. Flavanols of young mitotic and older non-mitotic anthers were determined using high pressure liquid chromatography--chemical reaction detection (HPLC-CRD). Catechin, epicatechin, B2, and epigallocatechin were minor compounds, whereas epicatechin gallate and epigallocatechin gallate were found in higher amounts. The major flavanol compound of the anthers, epicatechin gallate, exhibited a significant affinity to histone sulphate, as shown by UV-VIS spectroscopic titration.  相似文献   

18.
Epigallocatechin‐3‐O‐gallate (EGCG), derived from green tea, has been studied extensively because of its diverse physiological and pharmacological properties. This study evaluates the protective effect of EGCG on angiotensin II (Ang II)‐induced endoglin expression in vitro and in vivo. Cardiac fibroblasts (CFs) from the thoracic aorta of adult Wistar rats were cultured and induced with Ang II. Western blotting, Northern blotting, real‐time PCR and promoter activity assay were performed. Ang II increased endoglin expression significantly as compared with control cells. The specific extracellular signal‐regulated kinase inhibitor SP600125 (JNK inhibitor), EGCG (100 μM) and c‐Jun N‐terminal kinase (JNK) siRNA attenuated endoglin proteins following Ang II induction. In addition, pre‐treated Ang II‐induced endoglin with EGCG diminished the binding activity of AP‐1 by electrophoretic mobility shift assay. Moreover, the luciferase assay results revealed that EGCG suppressed the endoglin promoter activity in Ang II‐induced CFs by AP‐1 binding. Finally, EGCG and the JNK inhibitor (SP600125) were found to have attenuated endoglin expression significantly in Ang II‐induced CFs, as determined through confocal microscopy. Following in vivo acute myocardial infarction (AMI)‐related myocardial fibrosis study, as well as immunohistochemical and confocal analyses, after treatment with endoglin siRNA and EGCG (50 mg/kg), the area of myocardial fibrosis reduced by 53.4% and 64.5% and attenuated the left ventricular end‐diastolic and systolic dimensions, and friction shortening in hemodynamic monitor. In conclusion, epigallocatechin‐3‐O‐gallate (EGCG) attenuated the endoglin expression and myocardial fibrosis by anti‐inflammatory effect in vitro and in vivo, the novel suppressive effect was mediated through JNK/AP‐1 pathway.  相似文献   

19.
20.
Fujita K  Mogami A  Hayashi A  Kamataki T 《Life sciences》2000,66(20):1955-1967
Human uridinediphosphate-glucuronosyltransferase 1A1 (UGT1A1) was expressed in Salmonella typhimurium TA1535 cells by transfection of the cells with plasmids carrying the UGT1A1 cDNA. UGT1A1 cDNA was isolated by a polymerase chain reaction from human liver total RNA and was inserted into the pSE420 plasmid, linked to the trc promoter and terminator. The plasmid thus constructed was introduced into Salmonella TA1535 cells. The expression of human UGT1A1 protein was confirmed by Western blot analysis. The maximal expression was observed at 24 h after the addition of isopropyl-beta-D-thiogalactopyranoside, an inducer. However, the bilirubin conjugation activity of the membrane fraction from the Salmonella cells was not detectable. When a beta-glucuronidase inhibitor such as saccharic acid 1,4-lactone, glycyrrhizin or 1-naphtyl-beta-D-glucuronide was added to the reaction mixture, the bilirubin conjugation activity of the human UGT1A1 was detected. When geniposide was added to the reaction mixture, the bilirubin conjugation activity of UGT1A1 was not seen. Taking these results into account, the established Salmonella strain possesses the beta-glucuronidase activity. Since the beta-glucuronidase activity of the Salmonella was lower than that of E. coli, it was concluded that Salmonella seemed to be a good host to express UGT protein. This is the first study to demonstrate the establishment of a bacterial strain expressing native human UGT protein showing catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号