首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Ribosomal mutants (rpsD) which are associated with a generally increased translational ambiguity were investigated for their effects in vivo on individual tRNA species using suppressor tRNAs as models. It was found that nonsense suppression is either increased, unaffected or decreased depending on the codon context and the rpsD allele involved as well as the nature of the suppressor tRNA. Missense suppression of AGA and AGG by glyT(SuAGA/G) tRNA as well as UGG by glyT(SuUGG-8) tRNA is unaffected whereas suppression of UGG by glyT(SuUGA/G) or glyV(SuUGA/G) tRNA is decreased in the presence of an rpsD mutation. The effects on suppressor tRNA are thus not correlated with the ribosomal ambiguity (Ram) phenotype of the rpsD mutants used in this study. It is suggested that the mutationally altered ribosomes are changed in functional interactions with the suppressor tRNA itself rather than with the competing translational release factor(s) or cognate aminoacyl tRNA. The structure of suppressor tRNA, particularly the anticodon loop, and the suppressed codon as well as the codon context determine the allele specific functional interactions with these ribosomal mutations.  相似文献   

2.
Two X-linked mutations that give rise to overproduction of glucose-6-phosphate dehydrogenase (G6PD) were found among the progenies of isogenic strains which had been subjected to selection for high G6PD activity. Mapping of the high-activity factor in these mutants was carried out using car Zw B sw males of low G6PD activity. As a result, the factor mapped 0.02–0.04 unit to the left of the Zw locus. The amount of the G6PD gene was also quantitated utilizing a cloned G6PD gene as a probe, but no significant difference was found between the mutants and low-G6PD activity flies which shared the same X, second, and third chromosomes with the mutants. These findings are consistent with our notion that the mutations might be regulatory mutations, possibly resulting from the insertion of a novel class of transposable genetic elements.This research was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan.  相似文献   

3.
Hulda Barben 《Genetica》1966,37(1):109-148
By comparing the intragenic distribution of suppressor sensitive mutants in fine structure maps, 13 allele specific suppressor mutations (isolated from revertants in adenine dependent mutants of constitutionad 7) have been analyzed for their allele specific patterns of action in three different groups of mutants blocked in adenine biosynthesis. The 13 suppressor mutations, which have resulted from mutations at seven different suppressor loci, are characterized by four different suppression patterns. Three of these patterns, which partially overlap, are not locus specific since they include sensitive mutants at each of the three lociad 7, ad6 andad 1 studied. The relative frequency of mutants sensitive to one or the other of the suppressors of this type, the absence of osmotic-remedial strains among the suppressor sensitive mutants, and the polarized complementation behaviour of one suppressiblead 6 mutant and two suppressiblead 1 mutants capable of interallelic complementation, suggest that the suppression mechanism involves misreading of a mutant triplet of the nonsense type.  相似文献   

4.
A mouse with X-linked glucose-6-phosphate dehydrogenase (G6PD) deficiency has been recovered in offspring of 1-ethyl-1-nitrosourea-treated male mice. The activity alteration was detected in blood but can also be observed in other tissue extracts. Hemizygous, heterozygous, and homozygous mutants have, respectively, about 15, 60, and 15% G6PD remaining activity in the blood as compared to the wild type. Erythrocyte indices did not show differences between mutants and wild types. The mutation does not affect the electrophoretic migration, the isoelectric point, or the thermal stability. Kinetic properties, such as theK m for glucose-6-phosphate or for NADP and the relative utilization of substrate analogues, showed no differences between wild types and mutants with the exception of the relative utilization of deamino-NADP which was significantly lower in mutants. This is presently the only animal model for X-linked G6PD deficiency in humans.This research was supported in part by Contract BI6-156-D from the Commission of the European Communities.  相似文献   

5.
Glucose 6-phosphate dehydrogenase (G6PD) deficiency, known as favism, is classically manifested by hemolytic anemia in human. More recently, it has been shown that mild G6PD deficiency moderately affects cardiac function, whereas severe G6PD deficiency leads to embryonic lethality in mice. How G6PD deficiency affects organisms has not been fully elucidated due to the lack of a suitable animal model. In this study, G6PD-deficient Caenorhabditis elegans was established by RNA interference (RNAi) knockdown to delineate the role of G6PD in animal physiology. Upon G6PD RNAi knockdown, G6PD activity was significantly hampered in C. elegans in parallel with increased oxidative stress and DNA oxidative damage. Phenotypically, G6PD-knockdown enhanced germ cell apoptosis (2-fold increase), reduced egg production (65% of mock), and hatching (10% of mock). To determine whether oxidative stress is associated with G6PD knockdown-induced reproduction defects, C. elegans was challenged with a short-term hydrogen peroxide (H2O2). The early phase egg production of both mock and G6PD-knockdown C. elegans were significantly affected by H2O2. However, H2O2-induced germ cell apoptosis was more dramatic in mock than that in G6PD-deficient C. elegans. To investigate the signaling pathways involved in defective oogenesis and embryogenesis caused by G6PD knockdown, mutants of p53 and mitogen-activated protein kinase (MAPK) pathways were examined. Despite the upregulation of CEP-1 (p53), cep-1 mutation did not affect egg production and hatching in G6PD-deficient C. elegans. Neither pmk-1 nor mek-1 mutation significantly affected egg production, whereas sek-1 mutation further decreased egg production in G6PD-deficient C. elegans. Intriguingly, loss of function of sek-1 or mek-1 dramatically rescued defective hatching (8.3- and 9.6-fold increase, respectively) induced by G6PD knockdown. Taken together, these findings show that G6PD knockdown reduces egg production and hatching in C. elegans, which are possibly associated with enhanced oxidative stress and altered MAPK pathways, respectively.  相似文献   

6.
7.
    
We have used a biological phenomenon that occurs inNeurospora crassa, termed Repeat-Induced Point mutation (RIP), to create partially functional mutant alleles of thealbino-3 (al-3) gene encoding geranylgeranyl pyrophosphate synthase, an enzyme involved in the biosynthesis of carotenoids and diverse prenylated compounds. A total of 70 RIP-inducedal- 3 mutants were identified by their pale albino phenotype, resulting from inactivation of carotenoid biosynthesis. Nucleotide sequence analysis of theal-3 gene in five of the RIP-induced mutants revealed that in each case RIP had introduced no more than six point mutations. The low frequency of RIP mutants (0.42%) and the isolation of only leaky mutants with very few mutations suggest that ascospores containing a heavily mutatedal-3 gene do not survive. These results are evidence that the RIP phenomenon, used to inactivate and silence duplicated genes inN. crassa, may be exploited in its mild version as a method of sequence-specific in vivo mutagenesis to obtain functional mutant alleles ofNeurospora genes. This mild form of mutagenesis may be particularly advantageous in selecting for leaky mutations in essentialNeurospora genes.C.B. and M.C. contributed equally to this work  相似文献   

8.
Characterization of exon skipping mutants of the COP1 gene from Arabidopsis   总被引:4,自引:1,他引:3  
The removal of introns from pre-mRNA requires accurate recognition and selection of the intron splice sites. Mutations which alter splice site selection and which lead to skipping of specific exons are indicative of intron/exon recognition mechanisms involving an exon definition process. In this paper, three independent mutants to the COP1 gene in Arabidopsis which show exon skipping were identified and the mutations which alter the normal splicing pattern were characterized. The mutation in cop1–1 was a G→A change 4 nt upstream from the 3′ splice site of intron 5, while the mutation in cop1–2 was a G→A at the first nucleotide of intron 6, abolishing the conserved G within the 5′ splice site consensus. The effect of these mutations was skipping of exon 6. The mutation in cop1–8 was G→A in the final nucleotide of intron 10 abolishing the conserved G within the 3′ splice site consensus and leading to skipping of exon 11. The splicing patterns surrounding exons 6 and 11 of COP1 in these three mutant lines of Arabidopsis provide evidence for exon definition mechanisms operating in plant splicing.  相似文献   

9.

Background  

Three mutations in Arabidopsis thaliana strain Columbia – cpr1, snc1, and bal – map to the RPP5 locus, which contains a cluster of disease Resistance genes. The similar phenotypes, gene expression patterns, and genetic interactions observed in these mutants are related to constitutive activation of pathogen defense signaling. However, these mutant alleles respond differently to various conditions. Exposure to mutagens, such as ethyl methanesulfonate (EMS) and γ-irradiation, induce high frequency phenotypic instability of the bal allele. In addition, a fraction of the bal and cpr1 alleles segregated from bal × cpr1 F1 hybrids also show signs of phenotypic instability. To gain more insight into the mechanism of phenotypic instability of the bal and cpr1 mutations, we systematically compared the behavior of these unusual alleles with that of the missense gain-of-function snc1 allele in response to DNA damage or passage through F1 hybrids.  相似文献   

10.
Human glucose 6-phosphate dehydrogenase (G6PD) has both the “catalytic” NADP+ site and a “structural” NADP+ site where a number of severe G6PD deficiency mutations are located. Two pairs of G6PD clinical mutants, G6PDWisconsin (R393G) and G6PDNashville (R393H), and G6PDFukaya (G488S) and G6PDCampinas (G488V), in which the mutations are in the vicinity of the “structural” NADP+ site, showed elevated Kd values of the “structural” NADP+, ranging from 53 nM to 500 nM compared with 37 nM for the wild-type enzyme. These recombinant enzymes were denatured by Gdn-HCl and refolded by rapid dilution in the presence of l-Arg, NADP+ and DTT at 25 °C. The refolding yields of the mutants exhibited strong NADP+-dependence and ranged from 1.5% to 59.4% with 1000 μM NADP+, in all cases lower than the figure of 72% for the wild-type enzyme. These mutant enzymes also displayed decreased thermostability and high susceptibility to chymotrypsin digestion, in good agreement with their corresponding melting temperatures in CD experiments. Taken together, the results support the view that impaired binding of “structural” NADP+ can hinder folding as well as cause instability of these clinical mutant enzymes in the fully folded state.  相似文献   

11.
Summary Extragenic suppressor mutations for dnaA(Ts) mutations mapping in the rpoB gene (-subunit of RNA polymerase) were isolated by selection of spontaneous rifampicin resistant mutants and screening for temperature resistance. Six rpoB mutations were analysed for suppression of 12 different dnaA(Ts) mutations. The analysis showed that all dnaA(Ts) mutations could be suppressed by some rpoB mutation. All six rpoB mutations showed allele specificity when tested for suppression of 12 dnaA (Ts) mutant strains. The allele specificity was found to correlate with the map position of the dnaA (Ts) alleles.  相似文献   

12.
The prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency and its gene mutations were studied in the Achang population from Lianghe County in Southwestern China. We found that 7.31% (19 of 260) males and 4.35% (10 of 230) females had G6PD deficiency. The molecular analysis of G6PD gene exons 2―13 was performed by a PCR-DHPLC-Sequencing or PCR-Sequencing. Sixteen inde-pendent subjects with G6PD Mahidol (487G>A) and the new polymorphism IVS5-612 (G>C), which combined into a novel haplotype, were identified accounting for 84.2% (16/19). And 100% Achang G6PD Mahidol were linked to the IVS5-612 C. The percentage of G6PD Mahidol in the Achang group is close to that in the Myanmar population (91.3% 73/80), which implies that there are some gene flows between Achang and Myanmar populations. Interestingly, G6PD Canton (1376G>T) and G6PD Kaiping (1388G>A), which were the most common G6PD variants from other ethnic groups in China, were not found in this Achang group, suggesting that there are different G6PD mutation profiles in the Achang group and other ethnic groups in China. Our findings appear to be the first documented report on the G6PD genetics of the AChang people, which will provide important clues to the Achang ethnic group origin and will help prevention and treatment of malaria in this area.  相似文献   

13.
Overexpression of the Candida albicans ATP‐binding cassette transporter CaCdr1p causes clinically significant resistance to azole drugs including fluconazole (FLC). Screening of a ~ 1.89 × 106 member d ‐octapeptide combinatorial library that concentrates library members at the yeast cell surface identified RC21v3, a 4‐methoxy‐2,3,6‐trimethylbenzenesulphonyl derivative of the d ‐octapeptide d ‐NH2‐FFKWQRRR‐CONH2, as a potent and stereospecific inhibitor of CaCdr1p. RC21v3 chemosensitized Saccharomyces cerevisiae strains overexpressing CaCdr1p but not other fungal ABC transporters, the C. albicans MFS transporter CaMdr1p or the azole target enzyme CaErg11p, to FLC. RC21v3 also chemosensitized clinical C. albicans isolates overexpressing CaCDR1 to FLC, even when CaCDR2 was overexpressed. Specific targeting of CaCdr1p by RC21v3 was confirmed by spontaneous RC21v3 chemosensitization‐resistant suppressor mutants of S. cerevisiae expressing CaCdr1p. The suppressor mutations introduced a positive charge beside, or within, extracellular loops 1, 3, 4 and 6 of CaCdr1p or an aromatic residue near the extracytoplasmic end of transmembrane segment 5. The mutations did not affect CaCdr1p localization or CaCdr1p ATPase activity but some increased susceptibility to the CaCdr1p substrates FLC, rhodamine 6G, rhodamine 123 and cycloheximide. The suppressor mutations showed that the drug‐like CaCdr1p inhibitors FK506, enniatin, milbemycin α11 and milbemycin β9 have modes of action similar to RC21v3.  相似文献   

14.
Summary Three amber mutants of Escherichia coli, dnaG9, dnaG24 and dnaG26, affected in the structural gene (dnaG) for primase have been isolated from a parental strain carrying a temperature-sensitive amber suppressor (supF-Ts6). These mutants grow at 30° C but not at 42° C since primase is essential for growth and is synthesized only at low temperatures. Chimeric plasmids carrying dnaG + but no other chromosomal genes of E. coli complemented the amber mutations, and the plasmid carrying a part of dnaG lost the complementing activity. Beside, plasmids carrying a dnaG amber mutation complemented a temperature-sensitive dnaG mutation only in the presence of amber suppressor. One of the amber mutation, dnaG24 which maps proximal to the NH2-terminus of the dnaG gene, exerted a polar effect on the synthesis of RNA polymerase factor in E. coli.  相似文献   

15.
Nonsense suppressor strains of Lactococcus lactis were isolated using plasmids containing nonsense mutations or as revertants of a nonsense auxotrophic mutant. The nonsense suppressor gene was cloned from two suppressor strains and the DNA sequence determined. One suppressor is an ochre suppressor with an altered tRNAgin and the other an amber suppressor with an altered tRNAser. The nonsense suppressors allowed isolation of nonsense mutants of a lytic bacteriophage and suppressible auxotrophic mutants of L. lactis MG1363. A food-grade cloning vector based totally on DNA from Lactococcus and a synthetic polylinker with 11 unique restriction sites was constructed using the ochre suppressor as a selectable marker. Selection, following etectroporation of a suppressible purine auxotroph, can be done on purine-free medium. The pepN gene from L. lactis Wg2 was subcloned resulting in a food-grade plasmid giving a four- to fivefold increase in lysine aminopeptidase activity.  相似文献   

16.
Summary In Chlamydomonas reinhardi, mutations in either of two unlinked genes (PD2 and PD3) abolish the activity of the derepressible neutral phosphatase. The question arose whether these genes (or one of them) specify the structure of the enzyme or whether they have a regulatory function.Three mutants producing an active phosphatase at 25°C but not at 35°C were isolated and investigated. One of these mutants (PD 11 ts ) was allelic with PD2, another one (PD 12 ts ) was linked to PD3 and the third one (PD 13 ts ) was linked to PD2.PD 11 ts and PD 13 ts affected the formation of the neutral phosphatase only whereas PD 12 ts interfered with the formation of both neutral and alkaline phosphatases at 35°C. The neutral phosphatase produced by the three mutants at low temperature was not more thermosensitive in vitro than the wild enzyme. Moreover, quite similar Km values were found in WT, PD 11 ts and PD 12 ts using naphthyl phosphate as a substrate.On the other hand, revertants of PD 2 - and PD 3 - were isolated: their neutral phosphatases could not be distinguished from the wild enzyme on the basis of their thermosensitivities and Km values for naphthyl phosphate.These results are consistent with the idea that PD2 and PD3 are regulatory genes. Other possible regulatory genes were revealed through PD 12 ts and PD 13 ts mutations.Chercheur qualifié du Fonds National Belge de la Recherche Scientifique  相似文献   

17.
Some Mexican glucose-6-phosphate dehydrogenase variants revisited   总被引:1,自引:1,他引:0  
Summary Glucose-6-phosphate dehydrogenase (G6PD) deficiency appears to be fairly common in Mexico. We have now examined the DNA of three previously reported electrophoretically fast Mexican G6PD variants, — G6PD Distrito Federal, G6PD Tepic, and G6PD Castilla. All three of these variants, believed on the basis of biochemical characterization and population origin to be unique, have the GA transition at nucleotide 202 and the AG transition at nucleotide 376, mutations that we now recognize to be characteristic of G6PD A —. Two other Mexican males with G6PD deficiency were found to have the same mutation. All five have the (NlaIII/ FokI/PvuII/PstI) haplotype characteristic of G6PD A in Africa. Since the PvuII+ genotype seems to be rare in Europe, we conclude that all of these G6PD A-genes had their ancient origin in Africa, although in many of the Mexican patients with G6PD A –202A/376G the gene may have been imported more recently from Spain, where this variant, formerly known as G6PD Betica, is also prevalent.  相似文献   

18.
A rapid method for the determination of mutagenic specificity has been developed which makes use of the ochre mutation (TAA) in the his-4 gene of Escherichiacoli. Reversion to His+ may occur by suppressor mutation (Type I) or by mutation within the his-4 gene (Type II). The Type I mutations may be further subdivided with respect to the type of suppressor mutation by their ability to suppress nonsense mutants of bacteriophage T4, thus allowing the identification of the responsible base substitution (Kato et al., 1980). The system has the ability to identify mutagens which produce A:T → G:C transitions since only Type II mutants can arise through this base substitution; and in fact, the system confirms the A:T → G:C specificity of the mutagen, N4-hydroxycytidine (Janion and Glickman, 1980) since only Type II mutants were induced by treatment with this base analogue.When this system was further tested with several additional mutagens, the results indicate that ethyl methanesulphonate, methyl nitrosourea and ethyl nitrosourea produce primarily Type I revertants which were primarily G:C → A:T transitions. UV-light, γ-rays, 4NQO and methyl methanesulphonate produced all types of base substitutions. The tester strain was further improved by introducing a series of sequenced trp? frameshift mutations, thus allowing the simultaneous monitoring of frameshift and base-substitution mutations.  相似文献   

19.
20.
After exposure of cells of the methylotrophic yeast Hansenula polymorphaHF246leu1-1 to N-nitro-N-nitrosoguanidine, a collection of 227 mutants unable to grow on methanol at elevated temperature (45°C) was obtained. Ninety four ts mutants (35% of the total number of mutants), which were unable to grow on methanol only at 45°C but could grow at optimal temperature (37°C), were isolated. Complementation analysis of mutants using 12 deletion mutants for genes of peroxisome biogenesis (PEX) (available in this yeast species by the beginning of our work) allowed to assign 51 mutants (including 16 ts) to the separate group of mutants unable to complement deletion mutants with defects in eight PEX genes. These mutants were classified into three groups: group 1 contained 10pex10 mutants (4ts mutants among them); group 2 included 19 mutants that failed to complement otherpex testers: 1 pex1; 2 pex4(1ts); 6 pex5(5ts); 3 pex8; 1 pex13; 6 (3ts) pex19; group 3 contained 22 multiple mutants. In mutants of group 3, hybrids with several testers do not grow on methanol. All mutants (51) carried recessive mutations, except for mutant 108, in which the mutation was dominant only at 30°C, which suggests that it is ts-dominant. Recombination analysis of mutants belonging to group 2 revealed that only five mutants (two pex5 and three pex8) carried mutations for the corresponding PEX genes. Analysis of the spore population from the hybrids of remaining 14 mutants with the pex tester demonstrated the presence of methanol-utilizing segregants, which indicates mutation localization in other genes. In 19 mutants, random analysis of ascospores from hybrids obtained upon crossing mutants of group 3 with a strain lacking peroxisomal disorders (ade11) revealed a single mutation causing the appearance of a multiple phenotype. A more detailed study of two mutants from this group allowed us to localize this mutation in the only PEX gene (PEX1 or PEX2). The revealed disorder of complementation interactions between nonallelic genes is under debate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号