首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Visna virus gene expression is highly restricted in monocytes but is induced by monocyte-macrophage differentiation in vivo. Deletion and linker-scanning mutants, gel shift assays, and DNase I footprinting were used to identify sequences in the visna virus long terminal repeat involved in the developmental regulation of gene expression in the U937 monocytic cell line. We found that an AP-1 and an AP-4 binding site were critical for basal activity and that the AP-1 site was required for phorbol ester-inducible gene expression. These results suggest that cellular factors that interact with AP-1 sites are involved in the developmental regulation of visna virus gene expression in macrophages.  相似文献   

4.
5.
6.
The human hematopoietic prostaglandin D synthase (H-PGDS) gene is highly expressed in human megakaryoblastic cells, in which phorbol ester induces its expression. We characterized the promoter activity of the 5'-flanking region and the untranslated exon 1 (-1044 to +290) of the human H-PGDS gene in human megakaryoblastic Dami cells. Transient expression analysis using the luciferase reporter gene revealed that the 5'-flanking region and the untranslated exon 1 were sufficient for efficient expression of the H-PGDS gene in Dami cells, but not in monocytic U937 cells. Deletion and site-directed mutagenesis of the Oct-1 element in the 5'-flanking region decreased the promoter activity by approximately 30% compared with that of the entire region from -1044 to +290. An electrophoretic mobility shift assay demonstrated that Oct-1 specifically bound to the promoter region. Interestingly, even only untranslated exon 1 (+1 to +290) showed approximately 60% of the promoter activity of the entire region from -1044 to +290. Site-directed mutagenesis of the AP-2 element within the untranslated exon 1 abolished the basal promoter activity as well as its phorbol ester-mediated up-regulation. In AP-2-deficient HepG2 cells, the H-PGDS promoter activity was enhanced by coexpression with AP-2alpha. These findings indicate that the Oct-1 element in the 5'-flanking region acts as a positive cis-acting element and that the AP-2 element in the untranslated exon 1 is crucial for both basal and phorbol ester-mediated up-regulation of human H-PGDS gene expression in megakaryoblastic Dami cells.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
The regulation of human IFN-gamma receptor (IFN-gamma-R) expression by granulocyte-macrophage CSF (GM-CSF) was investigated. On monocytic cell lines (U937, HL60) and peripheral blood monocytes, IFN-gamma-binding capacity was down-regulated upon incubation with GM-CSF. Scatchard plot analyses revealed that down-regulation was caused by a decrease in IFN-gamma-R number rather than by a change in affinity. GM-CSF treatment did not reduce IFN-gamma-R-specific mRNA levels, but reduced the half-life of membrane-expressed IFN-gamma-R, indicating a post-translational control of IFN-gamma-R by GM-CSF. Because both IFN-gamma and GM-CSF are crucially involved in activation of monocytic function, the data presented suggest that down-regulation of IFN-gamma-R by GM-CSF may represent a potential negative feedback control of monocyte activation. Further studies of IFN-gamma binding characteristics and isolation of IFN-gamma-R by immunoprecipitation revealed that IFN-gamma binding to human peripheral blood monocytes is mediated by a receptor protein structurally and functionally identical to that previously characterized in several established cell lines of other tissue origin.  相似文献   

16.
17.
18.
19.
20.
Matrix metalloproteinases (MMP) have been identified in vulnerable areas of atherosclerotic plaques and may contribute to plaque instability through extracellular matrix degradation. Human metalloelastase (MMP-12) is a macrophage-specific MMP with broad substrate specificity and is capable of degrading proteins found in the extracellular matrix of atheromas. Despite its potential importance, little is known about the regulation of MMP-12 expression in the context of atherosclerosis. In this study, we report that in human peripheral blood-derived macrophages, MMP-12 mRNA was markedly up-regulated by several pro-atherosclerotic cytokines and growth factors including interleukin-1beta, tumor necrosis factor-alpha, macrophage colony-stimulating factor, vascular endothelial growth factor, and platelet-derived growth factor-BB. In contrast, the pleiotropic anti-inflammatory growth factor transforming growth factor-beta1 (TGF-beta1) inhibited cytokine-mediated induction of MMP-12 mRNA, protein, and enzymatic activity. Analyses of MMP-12 promoter through transient transfections and electrophoretic mobility shift assays indicated that both its induction by cytokines and its inhibition by TGF-beta1 depended on signaling through an AP-1 site at -81 base pairs. Moreover, the inhibitory effect of TGF-beta1 on MMP-12 was dependent on Smad3. Taken together, MMP-12 is induced by several factors implicated in atherosclerosis. The inhibition of MMP-12 expression by TGF-beta1 suggests that TGF-beta1, acting via Smad3, may promote plaque stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号