首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cryomicroscopy of protoplasts isolated from nonacclimated (NA) rye leaves (Secale cereale L. cv Puma) revealed that the predominant form of injury following cooling to the minimum temperature for 50% survival (LT50) (−5°C) was expansion-induced lysis of the plasma membrane during warming and thawing of the suspending medium when the decreasing osmolality resulted in osmotic expansion of the protoplasts. When cooled to temperatures below the LT50, the predominant form of injury was loss of osmotic responsiveness following cooling so that the protoplasts were osmotically inactive during warming. Only a low incidence (<10%) of expansion-induced lysis was observed in protoplasts isolated from acclimated (ACC) leaves, and the predominant form of injury following cooling to the LT50 (−25°C) was loss of osmotic responsiveness. The tolerable surface area increment (TSAI) which resulted in lysis of 50% of a population (TSAI50) of NA protoplasts osmotically expanded from isotonic solutions was 1122 ± 172 square micrometers. Similar values were obtained when the protoplasts were osmotically expanded from hypertonic solutions. The TSAI determined from cryomicroscopic measurements of individual NA protoplasts was similar to the TSAI50 values obtained from osmotic manipulation. The TSAI50 of ACC protoplasts expanded from isotonic solutions (2145 ± 235 square micrometers) was approximately double that of NA protoplasts and increased following osmotic contraction. Osmotic contractions were readily reversible upon return to isotonic solutions. During freeze-induced dehydration, endocytotic vesicles formed in NA protoplasts whereas exocytotic extrusions formed on the surface of ACC protoplasts. During osmotic expansion following thawing of the suspending medium, the endocytotic vesicles remained in the cytoplasm of NA protoplasts and the protoplasts lysed before their original volume and surface area were regained. In contrast, the exocytotic extrusions were drawn back into the surface of ACC protoplasts as the protoplasts regained their original volume and surface area.  相似文献   

2.
Seasonal variations in freezing tolerance, water content, water and osmotic potential, and levels of soluble sugars of leaves of field-grown Valencia orange (Citrus sinensis) trees were studied to determine the ability of citrus trees to cold acclimate under natural conditions. Controlled environmental studies of young potted citrus trees, spinach (Spinacia pleracea), and petunia (Petunia hybrids) were carried out to study the water relations during cold acclimation under less variable conditions. During the coolest weeks of the winter, leaf water content and osmotic potential of field-grown trees decreased about 20 to 25%, while soluble sugars increased by 100%. At the same time, freezing tolerance increased from lethal temperature for 50% (LT50) of −2.8 to −3.8°C. In contrast, citrus leaves cold acclimated at a constant 10°C in growth chambers were freezing tolerant to about −6°C. The calculated freezing induced cellular dehydration at the LT50 remained relatively constant for field-grown leaves throughout the year, but increased for leaves of plants cold acclimated at 10°C in a controlled environment. Spinach leaves cold acclimated at 5°C tolerated increased cellular dehydration compared to nonacclimated leaves. Cold acclimated petunia leaves increased in freezing tolerance by decreasing osmotic potential, but had no capacity to change cellular dehydration sensitivity. The result suggest that two cold acclimation mechanisms are involved in both citrus and spinach leaves and only one in petunia leaves. The common mechanism in all three species tested was a minor increase in tolerance (about −1°C) resulting from low temperature induced osmotic adjustment, and the second in citrus and spinach was a noncolligative mechanism that increased the cellular resistance to freeze hydration.  相似文献   

3.
Micro-osmotic manipulation was used to determine the influence of osmotic contraction on the expansion potential of individual protoplasts isolated from rye (Secale cereale L. cv Puma) leaves. For protoplasts isolated from leaves of nonacclimated plants (NA protoplasts), osmotic contraction in sufficiently hypertonic solutions (>1.53 osmolal) predisposed the protoplasts to lysis during osmotic expansion when they were returned to isotonic conditions (0.53 osmolal). In contrast, for protoplasts isolated from leaves of cold acclimated plants (ACC protoplasts), osmotic contraction in either 2.6 or 4.0 osmolal solutions was readily reversible. Following osmotic contraction, the resting tension (γr) of NA protoplasts was similar to that determined for protoplasts in isotonic solutions (i.e. 110 ± 22 micronewtons per meter). In contrast, γr of ACC protoplasts decreased from 164 ± 27 micronewtons per meter in isotonic solutions to values close to zero in hypertonic solutions. Following expansion in hypotonic solutions, γr's of both NA and ACC protoplasts were similar for area expansions over the range of 1.3 to 1.6. Following osmotic contraction and reexpansion of NA protoplasts, hysteresis was observed in the relationship between γr and surface area—with higher values of γr at a given surface area. In contrast, no hysteresis was observed in this relationship for ACC protoplasts. Direct measurements of plasma membrane tension (γ) during osmotic expansion of NA protoplasts from hypertonic solutions (1.53 osmolal) revealed that γ increased rapidly after small increments in surface area, and lysis occurred over a range of 1.2 to 8 millinewtons per meter. During osmotic expansion of ACC protoplasts from hypertonic solutions (2.6 osmolal), there was little increase in γ until after the isotonic surface area was exceeded. These results are discussed in relation to the differences in the behavior of the plasma membrane of NA and ACC protoplasts during osmotic contraction (i.e. endocytotic vesiculation versus exocytotic extrusion) and provide a mechanistic interpretation to account for the differential sensitivity of NA and ACC protoplasts to osmotic expansion from hypertonic solutions.  相似文献   

4.
A detailed analysis of cold acclimation of a winter rye (Secale cereale L. cv Puma), a winter oat (Avena sativa L. cv Kanota), and a spring oat cultivar (Ogle) revealed that freezing injury of leaves of nonacclimated seedlings occurred at -2[deg]C in both the winter and spring cultivars of oat but did not occur in winter rye leaves until after freezing at -4[deg]C. The maximum freezing tolerance was attained in all cultivars after 4 weeks of cold acclimation, and the temperature at which 50% electrolyte leakage occurred decreased to -8[deg]C for spring oat, -10[deg]C for winter oat, and -21[deg]C for winter rye. In protoplasts isolated from leaves of nonacclimated spring oat, expansion-induced lysis was the predominant form of injury over the range of -2 to -4[deg]C. At temperatures lower than -4[deg]C, loss of osmotic responsiveness, which was associated with the formation of the hexagonal II phase in the plasma membrane and subtending lamellae, was the predominant form of injury. In protoplasts isolated from leaves of cold-acclimated oat, loss of osmotic responsiveness was the predominant form of injury at all injurious temperatures; however, the hexagonal II phase was not observed. Rather, injury was associated with the occurrence of localized deviations of the plasma membrane fracture plane to closely appressed lamellae, which we refer to as the "fracture-jump lesion." Although the freeze-induced lesions in the plasma membrane of protoplasts of spring oat were identical with those reported previously for protoplasts of winter rye, they occurred at significantly higher temperatures that correspond to the lethal freezing temperature.  相似文献   

5.
Protoplasts were tested to determine whether the freezing sensitivity of the sfr4 (sensitive to freezing) mutant of Arabidopsis was due to the mutant's deficiency in soluble sugars after cold acclimation. When grown under nonacclimated conditions, sfr4 protoplasts possessed freezing tolerance similar to that of wild type, with the temperature at which 50% of protoplasts are injured (LT(50)) of -4.5 degrees C. In both wild-type and sfr4 protoplasts, expansion-induced lysis was the predominant lesion between -2 degrees C and -4 degrees C, but its incidence was low (approximately 10%); below -5 degrees C, loss of osmotic responsiveness (LOR) was the predominant lesion. After cold acclimation, the LT(50) was decreased to only -5.6 degrees C for sfr4 protoplasts, compared with -9.1 degrees C for wild-type protoplasts. Although expansion-induced lysis was precluded in both types of protoplasts, the sfr4 protoplasts remained susceptible to LOR. After incubation of seedlings in Suc solution in the dark at 2 degrees C, freezing tolerance and the incidence of freeze-induced lesions in sfr4 protoplasts were examined. The freezing tolerance of isolated protoplasts (LT(50) of -9 degrees C) and the incidence of LOR were now similar for wild type and sfr4. These results indicate that the freezing sensitivity of cold-acclimated sfr4 is due to its continued susceptibility to LOR (associated with lyotropic formation of the hexagonal II phase) and associated with the low sugar content of its cells.  相似文献   

6.
Cryopreservation of rye protoplasts by vitrification   总被引:12,自引:0,他引:12       下载免费PDF全文
A procedure has been developed for the vitrification of mesophyll protoplasts isolated from leaves of nonacclimated (NA) and cold-acclimated (ACC) winter rye seedlings (Secale cereale L. cv Puma). The procedure involves (a) equilibration (loading) of the protoplasts with an intermediate concentration (1.5, 1.75, or 2.0 molar) of ethylene glycol (EG) at 20°C; (b) dehydration of the protoplasts in a concentrated vitrification solution made of 7 molar EG + 0.88 molar sorbitol + 6% (w/v) bovine serum albumin (BSA) at 0°C; (c) placing the protoplasts into polypropylene straws and quenching in liquid nitrogen (LN2); and (d) recovery of the protoplasts from LN2 and removal (unloading) of the vitrification solution. For NA protoplasts, 47 + 1% survival was obtained following recovery from LN2 if the protoplasts were first loaded with 1.75 molar EG prior to the dehydration step. However, to achieve this level of survival, NA protoplasts had to be unloaded in a hypertonic (2.0 osmolal [osm]) sorbitol solution. If they were unloaded in an isotonic solution (0.53 osm), survival was 3±2%. In contrast, survival of ACC protoplasts following recovery from LN2 was 34 ± 10% when the protoplasts were loaded in a 2.0 molar EG solution and unloaded in an isotonic sorbitol solution (1.03 osm). If ACC protoplasts were unloaded in an hypertonic sorbitol solution (1.5 osm), survival was 51 ± 9%. These results indicate that the osmotic excursions incurred during the procedure are a major factor affecting survival.  相似文献   

7.
Maximum freezing tolerance of Arabidopsis thaliana L. Heyn (Columbia) was attained after 1 week of cold acclimation at 2[deg]C. During this time, there were significant changes in both the lipid composition of the plasma membrane and the freeze-induced lesions that were associated with injury. The proportion of phospholipids increased from 46.8 to 57.1 mol% of the total lipids with little change in the proportions of the phospholipid classes. Although the proportion of di-unsaturated species of phosphatidylcholine and phosphatidylethanolamine increased, mono-unsaturated species were still the preponderant species. The proportion of cerebrosides decreased from 7.3 to 4.3 mol% with only small changes in the proportions of the various molecular species. The proportion of free sterols decreased from 37.7 to 31.2 mol%, but there were only small changes in the proportions of sterylglucosides and acylated sterylglucosides. Freezing tolerance of protoplasts isolated from either nonacclimated or cold-acclimated leaves was similar to that of leaves from which the protoplasts were isolated (-3.5[deg]C for nonacclimated leaves; -10[deg]C for cold-acclimated leaves). In protoplasts isolated from nonacclimated leaves, the incidence of expansion-induced lysis was [less than or equal to]10% at any subzero temperature. Instead, freezing injury was associated with formation of the hexagonal II phase in the plasma membrane and subtending lamellae. In protoplasts isolated from cold-acclimated leaves, neither expansion-induced lysis nor freeze-induced formation of the hexagonal II phase occurred. Instead, injury was associated with the "fracture-jump lesion," which is manifested as localized deviations of the plasma membrane fracture plane to subtending lamellae. The relationship between the freeze-induced lesions and alterations in the lipid composition of the plasma membrane during cold acclimation is discussed.  相似文献   

8.
Sugar content and freezing tolerance of protoplasts of Arabidopsis thaliana leaves were manipulated by incubating seedlings in a sucrose solution before protoplast isolation. Incubation in a 400 mM sucrose solution at 2 °C in the dark increased their freezing tolerance equivalent to that achieved after a conventional cold acclimation at 2 °C. The increased freezing tolerance was due to a decrease in the incidence of freeze‐induced lesions: expansion‐induced lysis (EIL) between ?2 and ?4 °C and loss of osmotic responsiveness (LOR) between ?5 and ?12 °C. The concentration of sucrose in the incubation medium required to minimize the incidence of the lesions was substantially different: 10–35 mM for EIL and 30–400 mM for LOR. Incubation in the sucrose solution at 23 °C decreased LOR only at ?5 and ?6 °C but less than that incubated at 2 °C, and there was no effect on EIL. Incubation in sorbitol solutions at 2 °C also decreased LOR at ?5 and ?6 °C but much less than in the sucrose solution. These results suggest that low concentrations of sucrose act as a metabolic substrate for the low‐temperature‐induced alterations required for the amelioration of EIL and, at higher concentrations, sucrose has a direct cryoprotective effect to minimize LOR.  相似文献   

9.
In conclusion, isolated protoplasts are an excellent arena in which destabilization of the plasma membrane can be directly observed during a freeze-thaw cycle by cryomicroscopy. Destabilization is manifested in various ways--intracellular ice formation, loss of osmotic responsiveness, or expansion-induced lysis. The incidence of any particular form of injury will depend on the freeze-thaw protocol and hardiness of the tissue from which the protoplasts were isolated. In all cases, however, cold acclimation directly increases the stability of the plasma membrane to the multiple stresses that arise during a freeze-thaw cycle. Such observations provide for functional differences in the plasma membrane that may now be used to consider the significance of any compositional changes in the membrane that might be determined.  相似文献   

10.
Guy CL  Haskell D 《Plant physiology》1987,84(3):872-878
Spinach (Spinacia oleracea L. cv Bloomsdale) seedlings cultured in vitro were used to study changes in protein synthesis during cold acclimation. Seedlings grown for 3 weeks postsowing on an inorganic-nutrient-agar medium were able to increase their freezing tolerance when grown at 5°C. During cold acclimation at 5°C and deacclimation at 25°C, the kinetics of freezing tolerance induction and loss were similar to that of soil-grown plants. Freezing tolerance increased after 1 day of cold acclimation and reached a maximum within 7 days. Upon deacclimation at 25°C, freezing tolerance declined within 1 day and was largely lost by the 7th day. Leaf proteins of intact plants grown at 5 and 25°C were in vivo radiolabeled, without wounding or injury, to high specific activities with [35S]methionine. Leaf proteins were radiolabeled at 0, 1, 2, 3, 4, 7, and 14 days of cold acclimation and at 1, 3, and 7 days of deacclimation. Up to 500 labeled proteins were separated by two-dimensional gel electrophoresis and visualized by fluorography. A rapid and stable change in the protein synthesis pattern was observed when seedlings were transferred to the low temperature environment. Cold-acclimated leaves contained 22 polypeptides not found in nonacclimated leaves. Exposure to 5°C induced the synthesis of three high molecular weight cold acclimation proteins (CAPs) (Mr of about 160,000, 117,000, and 85,000) and greatly increased the synthesis of a fourth high molecular weight protein (Mr 79,000). These proteins were synthesized during day 1 and throughout the 14 day exposure to 5°C. During deacclimation, the synthesis of CAPs 160, 117, and 85 was greatly reduced by the first day of exposure to 25°C. However, CAP 79 was synthesized throughout the 7 day deacclimation treatment. Thus, the induction at low temperature and termination at warm temperature of the synthesis of CAPs 160, 117, and 85 was highly correlated with the induction and loss of freezing tolerance. Cold acclimation did not result in a general posttranslational modification of leaf proteins. Most of the observed changes in the two-dimensional gel patterns could be attributed to the de novo synthesis of proteins induced by low temperature. In spinach leaf tissue, heat shock altered the pattern of protein synthesis and induced the synthesis of several heat shock proteins (HSPs). One polypeptide synthesized in cold-acclimated leaves had a molecular weight and net charge (Mr 79,000, pI 4.8) similar to that of a HSP (Mr 83,000, pI 4.8). However, heat shock did not increase the freezing tolerance, and cold acclimation did not increase heat tolerance over that of nonacclimated plants, but heat-shocked leaf tissue was more tolerant to high temperatures than nonacclimated or cold-acclimated leaf tissue. When protein extracts from heat-shocked and cold-acclimated leaves were mixed and separated in the same two-dimensional gel, the CAP and HSP were shown to be two separate polypeptides with slightly different isoelectric points and molecular weights.  相似文献   

11.
Induction of Freezing Tolerance in Spinach during Cold Acclimation   总被引:8,自引:2,他引:6       下载免费PDF全文
Spinach (Spinacia oleracea L.) seedlings, grown in soil or on an agar medium in vitro, became cold acclimated when exposed to a constant 5°C. Plants subjected to cold acclimation, beginning 1 week postgermination, attained freezing tolerance levels similar to that achieved by seedlings that were cold acclimated beginning 3 weeks after sowing. Seedlings at 1 week of age had only cotyledonary leaves, while 3-week-old seedlings had developed true leaves. Plants grown in vitro were able to increase in freezing tolerance, but were slightly less hardy than soil-grown plants. These results suggest that spinach, a cool-season crop that begins growth in early spring when subzero temperatures are likely, can undergo cold acclimation at the earliest stages of development following germination. Axenic seedlings, grown in vitro, were used to develop a noninjurious radiolabeling technique. Leaf proteins were radiolabeled to specific activities of 105 counts per minute per microgram at 25°C or 5 × 104 counts per minute per microgram at 5°C over a 24 hour period. The ability to radiolabel leaf proteins of in vitro grown plants to high specific activities at low temperature, without injury or microbial contamination, will facilitate studies of cold acclimation.  相似文献   

12.
The heterogeneous ice nucleation characteristics and frost injury in supercooled leaves upon ice formation were studied in nonhardened and cold-hardened species and crosses of tuber-bearing Solanum. The ice nucleation activity of the leaves was low at temperatures just below 0°C and further decreased as a result of cold acclimation. In the absence of supercooling, the nonhardened and cold-hardened leaves tolerated extracellular freezing between −3.5° and −8.5°C. However, if ice initiation in the supercooled leaves occurred at any temperature below −2.6°C, the leaves were lethally injured.

To prevent supercooling in these leaves, various nucleants were tested for their ice nucleating ability. One% aqueous suspensions of fluorophlogopite and acetoacetanilide were found to be effective in ice nucleation of the Solanum leaves above −1°C. They had threshold temperatures of −0.7° and −0.8°C, respectively, for freezing in distilled H2O. Although freezing could be initiated in the Solanum leaves above −1°C with both the nucleants, 1% aqueous fluorophlogopite suspension showed overall higher ice nucleation activity than acetoacetanilide and was nontoxic to the leaves. The cold-hardened leaves survived between −2.5° and −6.5° using 1% aqueous fluorophlogopite suspension as a nucleant. The killing temperatures in the cold-hardened leaves were similar to those determined using ice as a nucleant. However, in the nonhardened leaves, use of fluorophlogopite as a nucleant resulted in lethal injury at higher temperatures than those estimated using ice as a nucleant.

  相似文献   

13.
Continuous wave nuclear magnetic resonance (NMR) studies indicated that the line width of the water absorption peak (Δv½) from crowns of winter and spring wheat (Triticum aestivum L.) increased during cold acclimation. There was a negative correlation between Δv½ and crown water content, and both of these parameters were correlated with the lowest survival temperature at which 50% or more of the crowns were not killed by freezing (LT50). Regression analyses indicated that Δv½ and water content account for similar variability in LT50. Slow dehydration of unacclimated winter wheat crowns by artificial means resulted in similarly correlated changes in water content and Δv½. Rapid dehydration of unacclimated crowns reduced water content but did not influence Δv½. The incubation of unacclimated winter wheat crowns in a sucrose medium reduced water content and increased Δv½. The increase in Δv½ appears to be dependent in part on a reduction in water content and an increase in solutes.  相似文献   

14.
We determined the cold (freezing) tolerance for field-grown plants of Atriplex halimus L. (Chenopodiaceae) in relation to plant ploidy level, leaf water relations and accumulation of osmolytes. Plants were grown at two sites in Murcia (Spain), having average minimum temperatures in the coldest month of 0.6 and 12.1 °C, respectively. LT50 values derived from laboratory freezing tests, using leaves taken from the plants in early winter and in spring, showed greater tolerance for winter-harvested leaves; the acclimation was more pronounced at the cold-winter site. Cold tolerance was related positively with leaf K and/or Na accumulation. Analysis of compatible organic solutes (soluble sugars, total amino acids and quaternary ammonium compounds) showed that cold tolerance (measured both as LT50 and as winter freezing damage in situ) was related most closely with leaf concentrations of soluble sugars. The leaf percentage dry matter content was related to both in vitro and in vivo tolerance, while tolerance in vitro was correlated also with the osmotic (potential ψs) and the relative water content. The two diploid (2n = 2x = 18) populations, from Spain, showed greater cold tolerance than the three tetraploid (2n = 4x = 36) populations, from North Africa and Syria, which may be related to the latter's greater cell size and consequent dilution of osmolytes. In this halophytic species, cold tolerance, like salinity and drought tolerance, seems to depend on osmotic adjustment, driven by vacuolar accumulation of K and Na and cytoplasmic accumulation of compatible solutes.  相似文献   

15.
We determined the cold (freezing) tolerance for field-grown plants of Atriplex halimus L. (Chenopodiaceae) in relation to plant ploidy level, leaf water relations and accumulation of osmolytes. Plants were grown at two sites in Murcia (Spain), having average minimum temperatures in the coldest month of 0.6 and 12.1 °C, respectively. LT50 values derived from laboratory freezing tests, using leaves taken from the plants in early winter and in spring, showed greater tolerance for winter-harvested leaves; the acclimation was more pronounced at the cold-winter site. Cold tolerance was related positively with leaf K and/or Na accumulation. Analysis of compatible organic solutes (soluble sugars, total amino acids and quaternary ammonium compounds) showed that cold tolerance (measured both as LT50 and as winter freezing damage in situ) was related most closely with leaf concentrations of soluble sugars. The leaf percentage dry matter content was related to both in vitro and in vivo tolerance, while tolerance in vitro was correlated also with the osmotic (potential ψs) and the relative water content. The two diploid (2n = 2x = 18) populations, from Spain, showed greater cold tolerance than the three tetraploid (2n = 4x = 36) populations, from North Africa and Syria, which may be related to the latter's greater cell size and consequent dilution of osmolytes. In this halophytic species, cold tolerance, like salinity and drought tolerance, seems to depend on osmotic adjustment, driven by vacuolar accumulation of K and Na and cytoplasmic accumulation of compatible solutes.  相似文献   

16.
Clonal ramets of 12 contrasting genotypes of Lolium perenneL. were grown in sand or soil-based compost and maintained underwell-watered conditions at 20/15°C or acclimated to lowtemperature (2°C) or to a restricted water supply. Freezingtolerance was measured as LT50 following exposure to sub-zerotemperatures in a freezing tank. Measurements were also madeof osmotic potential, water-soluble carbohydrates, free proline,free amino acids, and minerals in entire tillers. Acclimationto both drought and cold lowered LT50, induced osmotic adjustment,and increased concentrations of proline and amino acids, Rootingmedium had little effect on LT50, but caused large differencesin osmotic potential and in proline and amino-acid concentrations.There was considerable genetic diversity for all charactersmeasured, except for mineral contents. There was, however, norelationship between LT50 and osmotic potential or solute contentthat was consistent across the three sources of variation (growingmedium, acclimation, genotype). Furthermore, the diverse genotypicvalues of cold-induced freezing tolerance were not correlatedwith those of drought-induced tolerance. It is concluded thatmore precise measurements are needed of the partitioning ofsolutes during acclimation and of the sensitivity of differentorgans and tissues to freezing.Copyright 1993, 1999 AcademicPress Perennial ryegrass, hardening, acclimation, osmotic potential, solute potential, carbohydrates, proline  相似文献   

17.
Cold Acclimation in Arabidopsis thaliana   总被引:27,自引:13,他引:14       下载免费PDF全文
The abilities of two races of Arabidopsis thaliana L. (Heyn), Landsberg erecta and Columbia, to cold harden were examined. Landsberg, grown at 22 to 24°C, increased in freezing tolerance from an initial 50% lethal temperature (LT50) of about −3°C to an LT50 of about −6°C after 24 hours at 4°C; LT50 values of −8 to −10°C were achieved after 8 to 9 days at 4°C. Similar increases in freezing tolerance were obtained with Columbia. In vitro translation of poly(A+) RNA isolated from control and cold-treated Columbia showed that low temperature induced changes in the population of translatable mRNAs. An mRNA encoding a polypeptide of about 160 kilodaltons (isoelectric point about 4.5) increased markedly after 12 to 24 h at 4°C, as did mRNAs encoding four polypeptides of about 47 kilodaltons (isoelectric points ranging from 5-5.5). Incubation of Columbia callus tissue at 4°C also resulted in increased levels of the mRNAs encoding the 160 kilodalton polypeptide and at least two of the 47 kilodalton polypeptides. In vivo labeling experiments using Columbia plants and callus tissue indicated that the 160 kilodalton polypeptide was synthesized in the cold and suggested that at least two of the 47 kilodalton polypeptides were produced. Other differences in polypeptide composition were also observed in the in vivo labeling experiments, some of which may be the result of posttranslational modifications of the 160 and 47 kilodalton polypeptides.  相似文献   

18.
Highly enriched plasma membrane fractions were isolated from leaves of nonacclimated (NA) and acclimated (ACC) rye (Secale cereale L. cv Puma) seedlings. Collectively, free sterols, steryl glucosides, and acylated steryl glucosides constituted >50 mole% of the total lipid in both NA and ACC plasma membrane fractions. Glucocerebrosides containing hydroxy fatty acids constituted the major glycolipid class of the plasma membrane, accounting for 16 mole% of the total lipid. Phospholipids, primarily phosphatidylcholine and phosphatidylethanolamine with lesser amounts of phosphatidylglycerol, phosphatidic acid, phosphatidylserine, and phosphatidylinositol, comprised only 32 mole% of the total lipid in NA samples. Following cold acclimation, free sterols increased from 33 to 44 mole%, while steryl glucosides and acylated steryl glucosides decreased from 15 to 6 mole% and 4 to 1 mole%, respectively. Sterol analyses of these lipid classes demonstrated that free β-sitosterol increased from 21 to 32 mole% (accounting for the increase in free sterols as a class) at the expense of sterol derivatives containing β-sitosterol. Glucocerebrosides decreased from 16 to 7 mole% of the total lipid following cold acclimation. In addition, the relative proportions of associated hydroxy fatty acids, including 22:0 (h), 24:0 (h), 22:1 (h), and 24:1 (h), were altered. The phospholipid content of the plasma membrane fraction increased to 42 mole% of the total lipid following cold acclimation. Although the relative proportions of the individual phospholipids did not change appreciably after cold acclimation, there were substantial differences in the molecular species. Di-unsaturated molecular species (18:2/18:2, 18:2/18:3, 18:3/18:3) of phosphatidylcholine and phosphatidylethanolamine increased following acclimation. These results demonstrate that cold acclimation results in substantial changes in the lipid composition of the plasma membrane.  相似文献   

19.
The responses of cortical microtubules to sub-zero temperatures were examined in non-acclimated (NA) and cold-acclimated (CA) rye ( Secale cereale L. cv. Voima) leaf and root cells, and in protoplasts isolated enzymatically from leaves. Responses of leaf and root cells to hypertonic solutions equivalent to the dehydration response of freezing (P. L. Steponkus and D. V. Lynch 1989. J. Bioenerg. Biomembr. 21: 21–41) were also examined. At the respective growth temperatures both NA and CA leaf and root cells had typical organization and abundance of cortical microtubules as observed by indirect immunofluorescence (IIF) staining. Unchanged microtubule arrays were still present in CA leaf cells after -4°C treatment, while in leaf cells of NA plants and in the root cells of both NA and CA plants microtubules were shorter and less abundant. After -10°C treatment the cortical microtubules were almost totally depolymerized in both types of root cells and in leaf cells of NA plants, while CA leaf cells still had abundant cortical microtubule arrays. Semiquantitative analyses of cortical microtubules (MTs) of protoplasts confirmed the findings with intact leaf cells. Hypertonic treatment of NA and CA leaf cells gave similar effects as exposure of cells to sub-zero temperatures. However, after the hypertonic treatment, more microtubules remained present in the CA root cells than in the NA root cells, suggesting that also in root cells cold acclimation increases the dehydration stability of MTs. In conclusion, cold acclimation induces both greater frost stability and greater osmotic tolerance in the cortical microtubules of the leaf cells, and greater osmotic tolerance in the microtubules of the root cells in winter rye.  相似文献   

20.
The polyamines (PA) putrescine (Put), spermidine (Spd), and spermine (Spm) were measured during 3 weeks exposure to cold hardening (15.6°C day and 4.4°C night) and nonhardening (32.2°C day and 21.1°C night) temperature regimes in three citrus cultivars: sour orange (SO) (Citrus aurantium L.), `valencia' (VAL) (Citrus sinensis L. Osbeck), and rough lemon (RL) (Citrus jambhiri Lush). The changes in PA were compared to the amount of free proline, percent wood kill and percent leaf kill. A 2- to 3-fold increase in Spd concentrations were observed in hardened RL, SO, and VAL leaves compared to nonhardened leaves. Spermidine reached its highest level of approximately 200 nanomoles per gram fresh weight after 1 week of acclimation in both SO and VAL leaves, while RL spermidine content continued to increase up to the third week of acclimation. Spm levels in acclimated VAL and RL leaves increased 1- to 4-fold. However, SO leaves Spm content decreased with acclimation. Putrescine levels in SO and VAL increased 20 to 60% during the first 2 weeks of acclimation then declined after 3 weeks. RL putrescine content was not affected by cold acclimation. The data presented here provided direct relationship between increased Spd concentration and citrus cold hardiness. Free proline was 3- to 6-fold higher in acclimated than in nonacclimated trees. Results also demonstrate that in acclimated versus nonacclimated citrus trees the absolute amount rather than the ratio of increase in free proline is more important in predicting their ability to survive freezing stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号