首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interactions of Q beta replicase with Q beta RNA   总被引:15,自引:0,他引:15  
The interactions of Qβ replicase with Qβ RNA were investigated by treating replicase-Qβ RNA complexes under various conditions with ribonuclease T1, and by characterizing enzyme-bound RNA fragments recovered by a filter binding technique. Evidence for replicase binding at two internal regions of Qβ RNA was obtained. One region (at about 1250 to 1350 nucleotides from the 5′ end) overlaps with the initiation site for coat protein synthesis; this interaction is thought to be inessential for template activity but rather to be involved in the regulation of protein synthesis. Binding to this site (called the S-site) requires moderate concentrations of salt but no magnesium ions. The other region (at about 2550 to 2870 nucleotides from the 5′ end) is probably essential for template activity; binding to this site (called the M-site) is dependent on the presence of magnesium ions. The nucleotide sequences of the RNA fragments from the two sites were determined and found to have no common features. Under the conditions tested, replicase binding at the 3′ end of Qβ RNA could not be demonstrated, except when initiation of RNA synthesis was allowed to occur in the presence of GTP and host factor. If instead of intact Qβ RNA, a complete RNAase T1 digest of Qβ RNA was allowed to bind to replicase, oligonucleotides from the S-site and the M-site, and oligonucleotides from a region close to the 3′ end, were found to have the highest affinity to the enzyme.The RNA fragments recovered in highest yield, M-2 and S-3 from the M and S-site, respectively, were isolated on a preparative scale and their enzyme binding properties were studied. In competition assays with random RNA fragments of the same size, selective binding was observed both for the M and the S-site fragment. Partial competition for replicase binding was found if M-2 and S-3 were presented simultaneously to the enzyme. Either fragment, if preincubated with replicase, caused a specific inhibition of initiation of Qβ RNA-directed RNA synthesis, without inhibiting the poly(rC)-directed reaction.The results are discussed in terms of a model of replicase-Qβ RNA recognition. Template specificity is attributed to binding of internal RNA regions to replicase, resulting in a specific spatial orientation of the RNA by which the inherently weak, but essential, interaction at the 3′ end is allowed to occur and to lead to the initiation of RNA synthesis.  相似文献   

2.
We have identified, for the first time, regions of cis-acting RNA elements within the bacteriophage Q beta replicase cistron by analyzing the infectivities of 76 replicase gene mutant phages in the presence of a helper replicase. Two separate classes of mutant Q beta phage genomes (35 different insertion mutants, each containing an insertion of 3 to 15 nucleotides within the replicase gene, and 41 deletion genomes, each having from 15 to 935 nucleotides deleted from different regions of the gene) were constructed, and their corresponding RNAs were tested for the ability to direct the formation of progeny virus particles. Each mutant phage was tested for plaque formation in an Escherichia coli (F+) host strain that supplied helper Q beta replicase in trans from a plasmid DNA. Of the 76 mutant genomes, 34% were able to direct virus production at or close to wild-type levels (with plaque yield ratios of greater than 0.5), another 36% also produced virus particles, but at much lower levels than those of wild-type virus (with plaque yield ratios of less than 0.05), and the remaining 30% produced no virus at all. From these data, we have been able to define regions within the Q beta replicase gene that contain functional cis-acting RNA elements and further correlate them with regions of RNA that are solely required to code for functional RNA polymerase.  相似文献   

3.
Terminal adenylation in the synthesis of RNA by Q beta replicase   总被引:10,自引:0,他引:10  
We investigated the apparent requirement that Q beta replicase must add a nontemplated adenosine to the 3' end of newly synthesized RNA strands. We used abbreviated MDV-1 (+)-RNA templates that lacked either 62 or 63 nucleotides at their 5' end in Q beta replicase reactions. The MDV-1 (-)-RNA strands synthesized from these abbreviated (+)-strand templates were released from the replication complex, yet they did not possess a nontemplated 3'-terminal adenosine. These results imply that, despite observations that all naturally occurring RNAs synthesized by Q beta replicase possess a nontemplated 3'-adenosine, the addition of an extra adenosine is not an obligate step for the release of completed strands. Since the abbreviated templates lacked a normal 5' end, it is probable that a particular sequence at the 5' end of the template is required for terminal adenylation to occur.  相似文献   

4.
A new method for the purification of Q RNA-dependent RNA polymerase   总被引:14,自引:0,他引:14  
  相似文献   

5.
6.
Localization of the Q beta replicase recognition site in MDV-1 RNA   总被引:4,自引:0,他引:4  
Fragments of MDV-1 RNA (a small, naturally occurring template for Q beta replicase) that were missing nucleotides at either their 5' end or their 3' end were still able to form a complex with Q beta replicase. By assaying the binding ability of fragments of different length, it was established that the binding site for Q beta replicase is determined by nucleotide sequences that are located near the middle of MDV-1 RNA. Fragments missing nucleotides at their 5' end were able to serve as templates for the synthesis of complementary strands, but fragments missing nucleotides at their 3' end were inactive, indicating that the 3'-terminal region of the template is required for the initiation of RNA synthesis. The nucleotide sequences of both the 3' terminus and the central binding region of MDV-1 (+) RNA are almost identical to sequences at the 3' terminus and at an internal region of Q beta (-) RNA.  相似文献   

7.
Phage SP RNA-dependent RNA polymerase (SP replicase) was purified from Escherichia coli infected with RNA phage SP. The enzyme was found to be composed of four non-identical polypeptides, i.e. subunits I, II, III, and IV and molecular weights of 74,000, 69,000, 47,000, and 36,000 daltons, respectively. As in the case of phage Qbeta replicase, the largest polypeptide is identical with the ribosomal protein S1, and subunits III and IV with polypeptide chain elongation factors EF-Tu and EF-ts, respectively.. This is based on the behaviour of the subunits on SDS-polyacrylamide gel electrophoresis, isoelectric focusing and immunological cross-reaction. Subunits I, III, and IV of SP replicase are derived from the host cell, while subunit II is coded by phage RNA genome. The striking coincidence of the composition and entity of the structural components of SP replicase with those of Qbeta replicase may indicate the structural and functional requirements of host-derived polypeptides in RNA replicase. The binding activity of S1 (in 70S ribosome comples) to poly (U) is retained in SP replicase complex. In contrast, the GDP binding activity of EF-Tu is masked in SP replicase. It is concluded that S1 is required functionally whereas EF-Tu.EF-Ts are required structurally in RNA replicase.  相似文献   

8.
Numerous RNA species of different length and nucleotide sequence grow spontaneously in vitro in Q beta replicase reactions where no RNA templates are added deliberately. Here, we show that this spontaneous RNA synthesis by Q beta replicase is template directed. The immediate source of template RNA can be the laboratory air, but there are ways to eliminate, or at least substantially reduce, the harmful effects of spontaneous synthesis. Solitary RNA molecules were detected in a thin layer of agarose gel containing Q beta replicase, where they grew to form colonies that became visible upon staining with ethidium bromide. This result provides a powerful tool for RNA cloning and selection in vitro. We also show that replicating RNAs similar to those growing spontaneously are incorporated into Q beta phage particles and can propagate in vivo for a number of phage generations. These RNAs are the smallest known molecular parasites, and in many aspects they resemble both the defective interfering genomes of animal and plant viruses and plant virus satellite RNAs.  相似文献   

9.
L A Voronin 《Biochimie》1992,74(5):491-494
Q beta replicase replicates a variety of enzyme-specific small RNAs in addition to the phage genomic RNA. The sequence analysis has revealed that all these RNAs are potentially capable of forming a consensus secondary structure element. It represents a stalk which is formed by the 5'-GGG ... and ... CCCA-3' complementary stretches at the termini of the replicating RNA molecules and adjacent 5'- and 3'-hairpins, which may form a stacking with the stalk. The structure found is rather similar to the analogous structure in the tRNA molecule. The genomic RNA of the Q beta phage and other related phages can also form a similar structural element.  相似文献   

10.
Sapoviruses are one of the major agents of acute gastroenteritis in childhood. They form a tight genetic cluster (genus) in the Caliciviridae family that regroups both animal and human pathogenic strains. No permissive tissue culture has been developed for human sapovirus, limiting its characterization to surrogate systems. We report here on the first extensive characterization of the key enzyme of replication, the RNA-dependent RNA polymerase (RdRp) associated with the 3D(pol)-like protein. Enzymatically active sapovirus 3D(pol) and its defective mutant were expressed in Escherichia coli and purified. The overall structure of the sapovirus 3D(pol) was determined by X-ray crystallography to 2.32-A resolution. It revealed a right hand fold typical for template-dependent polynucleotide polymerases. The carboxyl terminus is located within the active site cleft, as observed in the RdRp of some (norovirus) but not other (lagovirus) caliciviruses. Sapovirus 3D(pol) prefers Mn(2+) over Mg(2+) but may utilize either as a cofactor in vitro. In a synthetic RNA template-dependent reaction, sapovirus 3D(pol) synthesizes a double-stranded RNA or labels the template 3' terminus by terminal transferase activity. Initiation of RNA synthesis occurs de novo on heteropolymeric templates or in a primer-dependent manner on polyadenylated templates. Strikingly, this mode of initiation of RNA synthesis was also described for norovirus, but not for lagovirus, suggesting structural and functional homologies in the RNA-dependent RNA polymerase of human pathogenic caliciviruses. This first experimental evidence makes sapovirus 3D(pol) an attractive target for developing drugs to control calicivirus infection in humans.  相似文献   

11.
Replication of the picornavirus genome is catalysed by a viral encoded RNA-dependent RNA polymerase, termed 3D polymerase. Together with other viral and host proteins, this enzyme performs its functions in the cytoplasm of host cells. The crystal structure of 3D polymerase from a number of picornaviruses has been determined. This review discusses the structure and function of the poliovirus 3D polymerase. The high error rates of 3D polymerase result in high sequence diversity such that virus populations exist as quasispecies. This phenomenon is thought to facilitate survival of the virus population in complex environments.  相似文献   

12.
Catalytic activities can be facilitated by ordered enzymatic arrays that co-localize and orient enzymes and their substrates. The purified RNA-dependent RNA polymerase from poliovirus self-assembles to form two-dimensional lattices, possibly facilitating the assembly of viral RNA replication complexes on the cytoplasmic face of intracellular membranes. Creation of a two-dimensional lattice requires at least two different molecular contacts between polymerase molecules. One set of polymerase contacts, between the “thumb” domain of one polymerase and the back of the “palm” domain of another, has been previously defined. To identify the second interface needed for lattice formation and to test its function in viral RNA synthesis, we used a hybrid approach of electron microscopic and biochemical evaluation of both wild-type and mutant viral polymerases to evaluate computationally generated models of this second interface. A unique solution satisfied all constraints and predicted a two-dimensional structure formed from antiparallel arrays of polymerase fibers that use contacts from the flexible amino-terminal region of the protein. Enzymes that contained mutations in this newly defined interface did not form lattices and altered the structure of wild-type lattices. When reconstructed into virus, mutations that disrupt lattice assembly exhibited growth defects, synthetic lethality or both, supporting the function of the oligomeric lattice in infected cells. Understanding the structure of polymerase lattices within the multimeric RNA-dependent RNA polymerase complex should facilitate antiviral drug design and provide a precedent for other positive-strand RNA viruses.  相似文献   

13.
The kinetics of template-free and template-instructed RNA synthesis by Qβ replicase were investigated. Template-instructed RNA synthesis has different growth rates in the exponential (excess enzyme) and the linear (excess template) phase of growth. In the absence of exogenous template, Qβ replicase synthesizes self-replicating RNA after an initial lag phase (“template-free” synthesis). The lag time can be determined by extrapolating the growth curve to the time of appearance of the first self-replicating strand. Growth rates in the exponential and linear phase, and especially the times of the lag phase for nucleotide incorporations under identical template-free conditions, show considerable scattering in contrast to the deterministic behavior of template-instructed synthesis. Evaluation of the kinetic data reveals that the time lag of template-free synthesis is strongly dependent on the concentration of the nucleoside triphosphate and the enzyme. The lag time is approximately inversely proportional to the powers 2.75 of the nucleotide and 2.5 of the enzyme concentration, respectively, both being lower limit values. The rate of template-instructed RNA synthesis is linearly proportional to the enzyme concentration and less than linearly proportional to the triphosphate concentration, in accordance with a substrate dependence of a Michaelis-Menten type of mechanism. The kinetic data cannot be reconciled with the proposition that template-free synthesis is due to low concentrations of templates present as impurities in the incorporation mixture and giving rise to autocatalytic RNA synthesis by a template-instructed mechanism. The data strongly favor the de novo mechanism proposed by Sumper &; Luce (1975).  相似文献   

14.
C K Biebricher  R Luce 《The EMBO journal》1992,11(13):5129-5135
SV-11 is a short-chain [115 nucleotides (nt)] RNA species that is replicated by Q beta replicase. It is reproducibly selected when MNV-11, another 87 nt RNA species, is extensively amplified by Q beta replicase at high ionic strength and long incubation times. Comparing the sequences of the two species reveals that SV-11 contains an inverse duplication of the high-melting domain of MNV-11. SV-11 is thus a recombinant between the plus and minus strands of MNV-11 resulting in a nearly palindromic sequence. During chain elongation in replication, the chain folds consecutively to a metastable secondary structure of the RNA, which can rearrange spontaneously to a more stable hairpin-form RNA. While the metastable form is an excellent template for Q beta replicase, the stable RNA is unable to serve as template. When initiation of a new chain is suppressed by replacing GTP in the replication mixture by ITP, Q beta replicase adds nucleotides to the 3' terminus of RNA. The replicase uses parts of the RNA sequence, preferentially the 3' terminal part for copying, thereby creating an interior duplication. This reaction is about five orders of magnitude slower than normal template-instructed synthesis. The reaction also adds nucleotides to the 3' terminus of some RNA molecules that are unable to serve as templates for Q beta replicase.  相似文献   

15.
Nine mutants of bacteriophage Qβ were studied, each having an amber mutation in the coat protein gene. The N-terminal coat protein fragments synthesized in vitro by a non-suppressing Escherichia coli cell extract directed by the mutant RNA's were characterized by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, agarose column gel filtration, and their relative content of certain amino acids. These methods permitted the mutant codon in the coat protein gene to be identified unambiguously; in three cases the amber mutation was at position 17; in five cases, at position 37, and in one case at position 86.Phage-specific uracil incorporation and Qβ replicase activities were measured in infected, non-suppressing cells. Their amounts for each mutant were related to the position of the amber mutation, indicating that across the coat protein gene of Qβ there exists a gradient of polarity for the expression of the replicase gene.  相似文献   

16.
17.
The spatial neighbourhood of the active center of Q beta replicase can be selectively modified by the method of self-catalysed affinity labeling. In the template-directed, mainly intramolecular enzymatic catalysis, the product [32P]GpG becomes specifically attached to the beta subunit. Using limited digestion of the radioactively labeled polypeptide by cyanogen bromide or N-chlorosuccinimide, we have mapped the attachment site to the region of subunit beta between Trp93 and Met130. Under our reaction conditions, Lys95 is the amino acid most likely to be modified, suggesting that Lys95 lies near the nucleotide binding site in the active center.  相似文献   

18.
RNA-dependent RNA polymerase in Chinese cabbage   总被引:10,自引:0,他引:10  
  相似文献   

19.
20.
Replication complexes containing only one molecule of Q beta replicase and one strand of midivariant RNA (MDV-1 RNA) template were prepared by incubating the replicase with an excess of MDV-1 (-) RNA. In the presence of excess minus strands, these monoenzyme replication complexes were shown to synthesize essentially pure MDV-1 (+) RNA in both the first and second cycles of replication. When an equivalent concentration of mutant MDV-1 (-) RNA was added to this reaction before completion of the first cycle of replication, only wild-type MDV-1 (+) RNA was produced in the first cycle, but both mutant and wild-type MDV-1 (+) RNA were produced in the second cycle of replication. These results demonstrate that a monoenzyme complex is competent to synthesize RNA and, therefore, that a multienzyme replication complex is not a necessary intermediate of replication. The data also imply that after the completion of chain elongation, the product strand is released from the replication complex and that the template and the replicase then dissociate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号