首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For the genetic analysis of the character of inheriting the immune response and the study of the possibility of immunoselection in astrakhan sheep, the test crossing of the previously selected and raised animals in different genetic combinations has been made. Regularities in inheriting the intensity of immune response in hybrids F2 and BC1 of astrakhan sheep, highly responsive to E. coli and Salmonella vaccines, confirm the dominant character of the capacity for intensive immune response. The second-generation hybrids obtained by the crossing of the animals, either highly responsive or weakly responsive to E. coli or Salmonella vaccine, show a high degree of concordance in their capacity for response to this antigen. This confirms the possibility for the immunoselection of sheep by their capacity for response to a given vaccine.  相似文献   

2.
The role of type 1 fimbriae in promoting bladder colonization and the course of Escherichia coli cystitis were examined with type 1 fimbriated strains of clinically isolated E. coli. In the experiments of mice in vivo, intact bladder epithelium showed natural resistance to the adherence of type 1 fimbriated and non-fimbriated E. coli. However, the exfoliation of bladder superficial cells by trypsinization before the bacterial inoculation promoted the adhesion and colonization of type 1 fimbriated E. coli onto bladder epithelium. After colonization of E. coli, maximum numbers of E. coli and leukocytes were observed 3 days after inoculation. Nine days after inoculation, both of E. coli and leukocytes disappeared and the regeneration of superficial cells was observed. On the other hand, superficial cells in mice injected with phosphate-buffered saline or non-fimbriated E. coli regenerated 5 days after trypsinization. The present study demonstrated that the removal of superficial cells is essential for the adhesion and colonization of type 1 fimbriated E. coli onto bladder epithelium in vivo and a new model of E. coli cystitis in mice was established. The model which we established is valuable for histopathological, immunological, and therapeutic studies.  相似文献   

3.
The role of nucleotide excision repair and 3-methyladenine DNA glycosylases in removing cytotoxic lesions induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in Salmonella typhimurium and Escherichia coli cells was examined. Compared to the E. coli wild-type strain, the S. typhimurium wild-type strain was more sensitive to the same dose of MNNG. Nucleotide excision repair in both bacterial species does not contribute significantly to the survival after MNNG treatment, indicating that the observed differences in survival between S. typhimurium and E. coli should be attributed to DNA-repair systems other than nucleotide excision repair. The survival of the E. coli alkA mutant strain is seriously affected by the lack of 3-methyladenine DNA glycosylase II, accentuating the importance of this DNA-repair enzyme in protecting E. coli cells against the lethal effects of methylating agents. Following indications from our experiments, the existence of an alkA gene analogue in S. typhimurium has been questioned. Dot-blot hybridisation, using the E. coli alkA gene as a probe, was performed, and such a nucleotide sequence was not detected on S. typhimurium genomic DNA. The existence of constitutive 3-methyladenine DNA glycosylase, analogous to the E. coli Tag gene product in S. typhimurium cells, suggested by the results is discussed.  相似文献   

4.
The donor specific bacteriophage PRDI has been shown to mediate the genes transfer into Escherichia coli and Francisella tularensis cell under certain conditions. It is necessary for the process that the recipient cells inherit the plasmids determining absorbtion of bacteriophages on the cellular surface while the transferred genes are able to be expressed. The frequencies of the tet-gene transfer from the plasmid pSKFT5 into Escherichia coli and Francisella tularensis 15 cells inheriting the plasmid Sa are, correspondingly, 10(-6) and 10(-7) clones per bacteriophage plaque.  相似文献   

5.
When the 42,000-dalton major outer membrane protein of Escherichia coli O111 is examined on alkaline polyacrylamide gels containing sodium dodecyl sulfate, it is resolved into three distinct bands designated as proteins 1, 2, and 3. Band 3 consists of two distinct polypeptides, proteins 3a and 3b. E. coli K-12 does not make any protein 2, but makes proteins similar to 1, 3a, and 3b as indicated by comparison of cyanogen bromide peptide patterns. Several Shigella species and most other strains of E. coli resemble E. coli K-12 in that they lack protein 2, whereas Salmonella typhimurium is more similar to E. coli O111. In addition to these species and strain differences, cultural differences resulted in differences in the outer membrane protein profiles. Under conditions of catabolite repression, the level of protein 2 in E. coli O111 decreased while the level of protein 1 increased. An enterotoxin-producing strain similar to E. coli O111 produced no protein 1 and an elevated level of protein 2 under conditions of low catabolite repression. The levels of proteins 1 and 3 are also different in different phases of the growth curve, with protein 1 being the major species in the exponential-phase cells and protein 3 being the major species in stationary-phase cells. A multiply phage-resistant mutant of E. coli K-12 with no obvious cell wall defects produced no protein 1 or 2, but made increased amounts of protein 3. Thus, the major outer membrane proteins of E. coli and related species may vary considerably without affecting outer membrane integrity.  相似文献   

6.
Escherichia coli is a rod-shaped intestinal bacterium which has a size of 1.1-1.5 μm x 2.0-6.0?μm. The fast cell division process and the uncomplicated living conditions have turned E. coli into a widely used host in genetic engineering and into one of the best studied microorganisms of all. We used E. coli BL21(DE3) as host for heterologous expression of S-layer proteins of Lysinibacillus sphaericus JG-A12 in order to enable a fast and high efficient protein production. The S-layer expression induced in E. coli an unusual elongation of the cells, thus producing filaments of > 100 μm in length. In the stationary growth phase, E. coli filaments develop tube-like structures that contain E. coli single cells. Fluorescence microscopic analyses of S-layer expressing E. coli cells that were stained with membrane stain FM (?) 5-95 verify the membrane origin of the tubes. Analyses of DAPI stained GFP-S-layer expressing E. coli support the assumption of a disordered cell division that is induced by the huge amount of recombinant S-layer proteins. However, the underlying mechanism is still not characterized in detail. These results describe the occurrence of a novel stable cell form of E. coli as a result of a disordered cell division process.  相似文献   

7.
目的探讨PI3K/AKT信号转导通路在大肠埃希菌(Escherichia coli,E.coli)诱导的人巨噬细胞系U937细胞凋亡中的作用。方法利用Western blot分析检测E.coli感染不同时间后磷酸化及非磷酸化AKT的表达;预先用不同浓度的LY294002(PI3K途径抑制剂)处理U937细胞60min,观察E.coli感染30min后U937细胞的凋亡情况。结果随着感染时间的延长,磷酸化AKT的表达逐渐下降。加入PI3K的抑制剂LY294002后,U937细胞的凋亡率逐渐升高。结论PI3K/AKT信号转导通路参与了E. coli诱导的U937细胞凋亡过程。LY294002通过特异性地抑制PI3K/AKT活性增加E.coli诱导的U937细胞凋亡率。  相似文献   

8.
A new E. coli strain has been constructed that contains the dinD1::LacZ+ fusion and is deficient in methylation-dependent restriction systems (McrA-, McrBC-, Mrr-). This strain has been used to clone restriction endonuclease genes directly into E. coli. When E. coli cells are not fully protected by the cognate methylase, the restriction enzyme damages the DNA in vivo and induces the SOS response. The SOS-induced cells form blue colonies on indicator plates containing X-gal. Using this method the genes coding for the thermostable restriction enzymes Taql (5'TCGA3') and Tth111l (5'GACNNNGTC3') have been successfully cloned in E. coli. The new strain will be useful to clone other genes involved in DNA metabolism.  相似文献   

9.
The expression of cytochrome c3 from Desulfovibrio vulgaris (Hildenborough) was examined in Escherichia coli transformed with either of two plasmids, pJ8 and pJ81. The former has an 840 bp insert of D. vulgaris DNA, containing the structural gene for cytochrome c3 (387 bp) and its promoter region. Plasmid pJ81 was generated from pJ8 by deoxyoligonucleotide-directed mutagenesis to direct the synthesis of a protein with an altered signal peptidase cleavage site [Ala(-1)----Asp(-1)]. Synthesis of the 14 kDa precursor, which was partly processed to the 12 kDa mature protein, was observed in cells of E. coli TG2(pJ8) by SDS gel electrophoresis and Western blotting. Analysis of spheroplasts revealed that the processed polypeptide was present in the periplasm while the precursor was found only in the membrane/cytoplasmic fraction. No processing was observed in E. coli TG2(pJ81) cells, due to the mutation of the signal peptide cleavage site. No insertion of haem into the E. coli product could be detected in E. coli TG2(pJ8) cells by post-electrophoretic protohaem fluorescence analysis. The sensitivity of the cytochrome c3 synthesized in E. coli TG2(pJ8) to digestion by chymotrypsin also indicated that the apoprotein was formed. The results indicate that E. coli is capable of synthesizing and exporting the cytochrome c3 polypeptide, but fails to insert the haems.  相似文献   

10.
We have assessed the phenotype and specificity of infiltrating mononuclear cells in a model of unilateral ascending acute pyelonephritis induced in rats with nephritogenic Escherichia coli or Pseudomonas aeruginosa. Histologic examination showed a predominance of mononuclear cells in the interstitium at all periods examined (4, 8, 15, 21, and 25 days), although at 4 and 8 days neutrophils were also abundant. Most of the mononuclear cells had the morphologic appearance of large lymphocytes. Immunoperoxidase studies with mAb showed that most of the mononuclear cells were W3/25+; many were W3/13+ and a small proportion were OX8+. Many of the mononuclear cells were Ia+. T cells were propagated in IL-2-containing media from small fragments of renal tissue with pyelonephritic lesions. Most of the propagated cells were W3/25+; fewer than (10%) were OX8+ or Ia+. T cells propagated from kidneys infected with E. coli responded, in proliferation assays, to the infecting strain or other E. coli strains, but not to P. aeruginosa or enterococci. The response to non-p-pilus-bearing E. coli was as great or greater than to E. coli with adhesins. T cells derived from lesions induced by P. aeruginosa responded to the infecting organisms, but not to E. coli. The response to the infecting organism (E. coli or P. aeruginosa) was MHC restricted, as indicated by the requirement for syngeneic APC. The results show that large numbers of T lymphocytes, especially with the "helper/inducer" phenotype, accumulate in the lesions of acute pyelonephritis in rats. Among the infiltrating T lymphocytes are activated cells and cells with specific reactivity to the infecting bacteria (or related strains). The findings indicate that T lymphocytes play a role within the kidney in response to the invading bacteria.  相似文献   

11.
Escherichia coli G3/10 is a component of the probiotic drug Symbioflor 2. In an in vitro assay with human intestinal epithelial cells, E. coli G3/10 is capable of suppressing adherence of enteropathogenic E. coli E2348/69. In this study, we demonstrate that a completely novel class II microcin, produced by probiotic E. coli G3/10, is responsible for this behavior. We named this antibacterial peptide microcin S (MccS). Microcin S is coded on a 50.6 kb megaplasmid of E. coli G3/10, which we have completely sequenced and annotated. The microcin S operon is about 4.7 kb in size and is comprised of four genes. Subcloning of the genes and gene fragments followed by gene expression experiments enabled us to functionally characterize all members of this operon, and to clearly identify the nucleotide sequences encoding the microcin itself (mcsS), its transport apparatus and the gene mcsI conferring self immunity against microcin S. Overexpression of cloned mcsI antagonizes MccS activity, thus protecting indicator strain E. coli E2348/69 in the in vitro adherence assay. Moreover, growth of E. coli transformed with a plasmid containing mcsS under control of an araC PBAD activator-promoter is inhibited upon mcsS induction. Our data provide further mechanistic insight into the probiotic behavior of E. coli G3/10.  相似文献   

12.
Invasion of brain microvascular endothelial cells (BMEC) is a prerequisite for successful crossing of the blood-brain barrier by Escherichia coli K1. We have previously demonstrated the requirement of cytoskeletal rearrangements and activation of focal adhesion kinase (FAK) in E. coli K1 invasion of human BMEC (HBMEC). The current study investigated the role of phosphatidylinositol 3-kinase (PI3K) activation and PI3K interaction with FAK in E. coli invasion of HBMEC. PI3K inhibitor LY294002 blocked E. coli K1 invasion of HBMEC in a dose-dependent manner, whereas an inactive analogue LY303511 had no such effect. In HBMEC, E. coli K1 increased phosphorylation of Akt, a downstream effector of PI3K, which was completely blocked by LY294002. In contrast, non-invasive E. coli failed to activate PI3K. Overexpression of PI3K mutants Deltap85 and catalytically inactive p110 in HBMEC significantly inhibited both PI3K/Akt activation and E. coli K1 invasion of HBMEC. Stimulation of HBMEC with E. coli K1 increased PI3K association with FAK. Furthermore, PI3K/Akt activation was blocked in HBMEC-overexpressing FAK dominant-negative mutants (FRNK and Phe397FAK). These results demonstrated the involvement of PI3K signaling in E. coli K1 invasion of HBMEC and identified a novel role for PI3K interaction with FAK in the pathogenesis of E. coli meningitis.  相似文献   

13.
Escherichia coli K1 invasion of brain microvascular endothelial cells (BMECs) is a prerequisite for penetration into the central nervous system and requires actin cytoskeletal rearrangements. Here, we demonstrate that E. coli K1 invasion of BMECs requires RhoA activation. In addition, we show that cytotoxic necrotizing factor-1 (CNF1) contributes to E. coli K1 invasion of brain endothelial cells in vitro and traversal of the blood-brain barrier in the experimental hematogenous meningitis animal model. These in vitro and in vivo effects of CNF1 were dependent upon RhoA activation as shown by (a) decreased invasion and RhoA activation with the Delta cnf1 mutant of E. coli K1 and (b) restoration of invasion frequency of the Delta cnf1 mutant to the level of the parent E. coli K1 strain in BMECs with constitutively active RhoA. In addition, CNF1-enhanced E. coli invasion of brain endothelial cells and stress fiber formation were independent of focal adhesion kinase and phosphatidylinositol 3-kinase activation. This is the first demonstration that CNF1 contributes to E. coli K1 invasion of BMECs.  相似文献   

14.
Escherichia coli strains B and K12 W 1655 F+ are able to bind more lethal units of colicins E2, E3, G, H, Ia, and K+ X per one stable L-form cell (of the protoplast type) than per one rod cell; colicin D is bound in a higher amount on E. coli B rods. This pattern remains unchanged, if the same colicins are attached on chloroform-killed cells of both forms. Rods of both E. coli strains are more sensitive to colicins D, E2, E3, K + X (as--in the strain B--to colicin Ia) than cells of the respective L-forms. In the strain W 1655 F+ both cell forms are equally highly sensitive to colicin Ia. The stable L-forms of both strains are much more sensitive to colicins G and H than the rods. Thus the Gram-negative cell wall decreases the probability of a colicin molecule to get attached to its receptor in the cytoplasmic membrane. On the other hand, in E. coli cells the attachment of most colicin molecules to the wall receptors increases the probability of their biological effect. There is no such effect of the wall-attachment on the action of colicins G or H. The strain B is tolerant to colicin E2, while being resistant to E3; thus the cytoplasmic membrane receptor sites for them are not identical.  相似文献   

15.
Escherichia coli K1 traversal of the human brain microvascular endothelial cells (HBMEC) that constitute the blood-brain barrier (BBB) is a complex process involving E. coli adherence to and invasion of HBMEC. In this study, we demonstrated that human transforming growth factor-beta-1 (TGF-beta1) increases E. coli K1 adherence, invasion, and transcytosis in HBMEC. In addition, TGF-beta1 increases RhoA activation and enhances actin condensation in HBMEC. We have previously shown that E. coli K1 invasion of HBMEC requires phosphatidylinositol-3 kinase (PI3K) and RhoA activation. TGF-beta1 increases E. coli K1 invasion in PI3K dominant-negative HBMEC, but not in RhoA dominant-negative HBMEC, indicating that TGF-beta1-mediated increase in E. coli K1 invasion is RhoA-dependent, but not PI3K-dependent. Our findings suggest that TGF-beta1 treatment of HBMEC increases E. coli K1 adherence, invasion, and transcytosis, which are probably dependent on RhoA.  相似文献   

16.
The sensitivity of the anomalous time dependence of viscosity to the concentration of the DNA-protein complexes (DNA + histone-like proteins of bacteria or, in other words, the genome) such as chromatin and the conformations of these complexes in lysates of E. coli AB1157 cells were studied. A linear region of the anomalous viscosity time dependence on the concentration of E. coli cells was found in which the interactions between single DNA-protein complexes can be neglected. The response of the genome of E. coli to ethidium bromide at concentrations of 0.0003-3 mg/ml was studied. Significant differences in the effect of ethidium bromide on E. coli cells in the stationary and logarithmic growth phases were found. The effect of heating cell lysates, the molar concentration of NaCl in lysates, and the addition of proteins into lysates on the parameters of the anomalous viscosity time dependence was studied. It was shown that proteins do not contribute significantly to the effect of anomalous viscosity time dependence. The results obtained confirm that the method is sensitive to changes in the conformational state of the genome of E. coli cells.  相似文献   

17.
Effect of Glutaraldehyde on the Outer Layers of Escherichia coli   总被引:5,自引:4,他引:1  
S ummary : Sodium lauryl sulphate (SLS) at pH 3 and 8 lysed cell walls of Escherichia coli. Pretreatment with glutaraldehyde at pH 3 and at pH 8 prevented this lysis. SLS induced maximum lysis of E. coli cells at 40°; pretreatment of cells with glutaraldehyde prevented this lysis also. Electrophoretic studies indicated that glutaraldehyde accumu lated on the surface of E. coli cells more rapidly in acid than in alkaline conditions, and that it blocked amino groups on the surface layer of Bacillus subtilis spores. The relationship of these findings to the bactericidal efficiency of glutaraldehyde in acid and alkaline solution is discussed.  相似文献   

18.
19.
Abstract The survival pattern and plasmid maintenance of Escherichia coli was examined in an artificial seawater microcosm. It was found that the three strains of E. coli (EK3C, H10407 and 34309) included in the study were able to maintain a portion of cells in the culturable phase for at least 3 years in artificial seawater. Along with retaining culturability, that portion of the cell population also maintained their indigenous plasmids over the 3-year period. It is concluded that cells of E. coli maintaining culturability in seawater are selectively adapted to the salinity of seawater, remaining in a culturable state. The results of the study are significant in that it has been assumed by many public health authorities that E. coli cannot survive, without nutrient addition, in seawater for long periods of time, i.e., years of exposure to seawater.  相似文献   

20.
The photodynamic activity of 5,10,15-tris[4-(3-N,N,N-trimethylammoniumpropoxy)phenyl]-20-(4-trifluoromethylphenyl)porphyrin iodide (A3B3+) has been studied in vitro on a typical Gram-negative bacterium Escherichia coli immobilized on agar surfaces. The results obtained for the tricationic A3B3+ porphyrin were compared with those of 5,10,15,20-tetra(4-N,N,N-trimethylammoniumphenyl)porphyrin p-tosylate (TTAP4+), which is a standard active sensitizer established to eradicate E. coli in cellular suspension. The photobleaching of these porphyrins in solution was evaluated by decay in absorbance and in fluorescence. In both cases, a higher photostability was found for A3B3+ than for TTAP4+. Photodynamic inactivation capacities of these sensitizers were analyzed in E. coli cells immobilized on agar surfaces. Small colonies were treated with different amount of sensitizer (0-14 nmol) and irradiated with visible light for 3h. The light source used was either a projector or midday sun. The A3B3+ porphyrin produced a growth delay of E. coli colonies on agar surfaces. Similar result was obtained irradiating only one isolated colony through an optical fiber. Under these conditions, A3B3+ porphyrin shows a high activity to inactivate localized bacterial cells. The higher photodynamic activity of A3B3+ was confirmed by mechanical spreading of the colonies before treatment. This procedure produces complete inactivation of E. coli cells on the agar surface. Therefore, tricationic A3B3+ porphyrin is an interesting sensitizer with potential applications in photodynamic inactivation of bacteria growing as localized foci of infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号