首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exposure of cultured human melanocytes to ultraviolet radiation (UV) results in DNA damage. In melanoma, UV‐signature mutations resulting from unrepaired photoproducts are rare, suggesting the possible involvement of oxidative DNA damage in melanocyte malignant transformation. Here we present data demonstrating immediate dose‐dependent generation of hydrogen peroxide in UV‐irradiated melanocytes, which correlated directly with a decrease in catalase activity. Pretreatment of melanocytes with α‐melanocortin (α‐MSH) reduced the UV‐induced generation of 7,8‐dihydro‐8‐oxyguanine (8‐oxodG), a major form of oxidative DNA damage. Pretreatment with α‐MSH also increased the protein levels of catalase and ferritin. The effect of α‐MSH on 8‐oxodG induction was mediated by activation of the melanocortin 1 receptor (MC1R), as it was absent in melanocytes expressing loss‐of‐function MC1R, and blocked by concomitant treatment with an analog of agouti signaling protein (ASIP), ASIP‐YY. This study provides unequivocal evidence for induction of oxidative DNA damage by UV in human melanocytes and reduction of this damage by α‐MSH. Our data unravel some mechanisms by which α‐MSH protects melanocytes from oxidative DNA damage, which partially explain the strong association of loss‐of‐function MC1R with melanoma.  相似文献   

2.
Human melanocyte homeostasis is sustained by paracrine factors that reduce the genotoxic effects of ultraviolet radiation (UV), the major etiological factor for melanoma. The keratinocyte‐derived endothelin‐1 (End‐1) and α‐melanocyte‐stimulating hormone (α‐MSH) regulate human melanocyte function, proliferation and survival, and enhance repair of UV‐induced DNA photoproducts by binding to the Gq‐ and Gi‐protein‐coupled endothelin B receptor (EDNRB), and the Gs‐protein‐coupled melanocortin 1 receptor (MC1R), respectively. We hereby report that End‐1 and α‐MSH regulate common effectors of the DNA damage response to UV, despite distinct signaling pathways. Both factors activate the two DNA damage sensors ataxia telangiectasia and Rad3‐related and ataxia telangiectasia mutated, enhance DNA damage recognition by reducing soluble nuclear and chromatin‐bound DNA damage binding protein 2, and increase total and chromatin‐bound xeroderma pigmentosum (XP) C. Additionally, α‐MSH and End‐1 increase total levels and chromatin localization of the damage verification protein XPA, and the levels of γH2AX, which facilitates recruitment of DNA repair proteins to DNA lesions. Activation of EDNRB compensates for MC1R loss of function, thereby reducing the risk of malignant transformation of these vulnerable melanocytes. Therefore, MC1R and EDNRB signaling pathways represent redundant mechanisms that inhibit the genotoxic effects of UV and melanomagenesis.  相似文献   

3.
Activation of the melanocortin 1 receptor (MC1R) by α‐melanocortin (α‐MSH) stimulates eumelanin synthesis and enhances repair of ultraviolet radiation (UV)‐induced DNA damage. We report on the DNA damage response (DDR) of human melanocytes to UV and its enhancement by α‐MSH. α‐MSH up‐regulated the levels of XPC, the enzyme that recognizes DNA damage sites, enhanced the UV‐induced phosphorylation of the DNA damage sensors ataxia telangiectasia and Rad3‐related (ATR) and ataxia telangiectasia mutated (ATM) and their respect‐ive substrates checkpoint kinases 1 and 2, and increased phosphorylated H2AX (γH2AX) formation. These effects required functional MC1R and were absent in melanocytes expressing loss of function (LOF) MC1R. The levels of wild‐type p53‐induced phosphatase 1 (Wip1), which dephosphorylates γH2AX, correlated inversely with γH2AX. We propose that α‐MSH increases UV‐induced γH2AX to facilitate formation of DNA repair complexes and repair of DNA photoproducts, and LOF of MC1R compromises the DDR and genomic stability of melanocytes.  相似文献   

4.
α‐melanocyte stimulating hormone (α‐MSH) is a tridecapeptide fragment of pro‐opiomelanocortin (POMC) with broad effects on appetite, skin pigmentation, hormonal regulation, and potential roles in both inflammation and autoimmunity. The use of this peptide as an anti‐inflammatory agent is limited by its low selectivity between the melanocortin receptors, susceptibility to proteolytic degradation, and rapid clearance from circulation. A retro‐inverso (RI) sequence of α‐MSH was characterized for receptor activity and resistance to protease. This peptide demonstrated surprisingly high selectivity for binding the melanocortin receptor 1 (MC1R). However, RI‐α‐MSH exhibited a diminished binding affinity for MC1R compared to α‐MSH. Mapping of the residues critical for agonist activity, receptor binding, and selectivity by alanine scanning, identified the same critical core tetrapeptide required for the native peptide. Modest improvements in affinity were obtained by conservative changes employing non‐natural amino acids and substitution of the C‐terminal sequence with a portion of a MC1R ligand peptide previously identified by phage display. Recombination of these elements yielded a peptide with an identical Ki as α‐MSH at MC1R and a lower EC50 in Mel‐624 melanoma cells. A number of other structural modifications of the RI peptide were found to differ in effect from those reported for the L ‐form α‐MSH, suggesting a significantly altered interaction with the MC1R. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
Homozygous loss of function of the melanocortin 1 receptor (MC1R) is associated with a pheomelanotic pigment phenotype and increased melanoma risk. MC1R heterozygosity is less well studied, although individuals inheriting one loss‐of‐function MC1R allele are also melanoma‐prone. Using the K14‐Scf C57BL/6J animal model whose skin is characterized by lifelong retention of interfollicular epidermal melanocytes like that of the human, we studied pigmentary, UV responses, and DNA repair capacity in the skin of variant Mc1r background. Topical application of forskolin, a skin‐permeable pharmacologic activator of cAMP induction to mimic native Mc1r signaling, increased epidermal eumelanin levels, increased the capacity of Mc1r‐heterozygous skin to resist UV‐mediated inflammation, and enhanced the skin's ability to clear UV photolesions from DNA. Interestingly, topical cAMP induction also promoted melanin accumulation, UV resistance, and accelerated clearance in Mc1r fully intact skin. Together, our findings suggest that heterozygous Mc1r loss is associated with an intermediately melanized and DNA repair‐proficient epidermal phenotype and that topical cAMP induction enhances UV resistance in Mc1r‐heterozygous or Mc1r‐wild‐type individuals by increasing eumelanin deposition and by improving nucleotide excision repair.  相似文献   

6.
Melanocortin‐1 receptor (MC1R) and its ligands, α‐melanocyte stimulating hormone (αMSH) and agouti signaling protein (ASIP), regulate switching between eumelanin and pheomelanin synthesis in melanocytes. Here we investigated biological effects and signaling pathways of ASIP. Melan‐a non agouti (a/a) mouse melanocytes produce mainly eumelanin, but ASIP combined with phenylthiourea and extra cysteine could induce over 200‐fold increases in the pheomelanin to eumelanin ratio, and a tan‐yellow color in pelletted cells. Moreover, ASIP‐treated cells showed reduced proliferation and a melanoblast‐like appearance, seen also in melanocyte lines from yellow (Ay/a and Mc1re/ Mc1re) mice. However ASIP‐YY, a C‐terminal fragment of ASIP, induced neither biological nor pigmentary changes. As, like ASIP, ASIP‐YY inhibited the cAMP rise induced by αMSH analog NDP‐MSH, and reduced cAMP level without added MSH, the morphological changes and depigmentation seemed independent of cAMP signaling. Melanocytes genetically null for ASIP mediators attractin or mahogunin (Atrnmg‐3J/mg‐3J or Mgrn1md‐nc/md‐nc) also responded to both ASIP and ASIP‐YY in cAMP level, while only ASIP altered their proliferation and (in part) shape. Thus, ASIP–MC1R signaling includes a cAMP‐independent pathway through attractin and mahogunin, while the known cAMP‐dependent component requires neither attractin nor mahogunin.  相似文献   

7.
Melanin pigments produced in human melanocytes are classified into two categories; black coloured eumelanin and reddish‐yellow pheomelanin. Stimulation of melanocytes with α‐melanocyte‐stimulating hormone (α‐MSH), one of several melanogenic factors, has been reported to enhance eumelanogenesis to a greater degree than pheomelanogenesis, which contributes to hyperpigmentation in skin. Nitric oxide (NO) and histamine are also melanogenesis‐stimulating factors that are released from cells surrounding melanocytes following ultraviolet (UV) irradiation. In this study, the effects of NO and histamine on the ratio of eumelanin and pheomelanin were examined in human melanocytes, and then compared with that of α‐MSH. The amounts of eumelanin and pheomelanin were quantified using high‐performance liquid chromatography analysis after oxidation and hydrolysis of melanin. Melanogenesis was induced by the addition of α‐MSH, NO, or histamine to melanocytes. The amount of eumelanin production significantly increased with independent stimulation by these melanogenic factors, especially histamine, while that of pheomelanin significantly increased with α‐MSH and NO, but only slightly with histamine. As a result, the ratio of eumelanin and pheomelanin increased significantly with the addition of NO or histamine. These results suggest that NO and histamine, as in the case of α‐MSH, may contribute to UV‐induced hyperpigmentation by enhancing eumelanogenesis.  相似文献   

8.
9.
10.
Malignant transformation of melanocytes leads to melanoma, the most fatal form of skin cancer. Ultraviolet radiation (UVR)‐induced DNA photoproducts play an important role in melanomagenesis. Cutaneous melanin content represents a major photoprotective mechanism against UVR‐induced DNA damage, and generally correlates inversely with the risk of skin cancer, including melanoma. Melanoma risk is also determined by susceptibility genes, one of which is the melanocortin 1 receptor (MC1R) gene. Certain MC1R alleles are strongly associated with melanoma. We hereby present experimental evidence for the role of two melanoma risk factors, constitutive pigmentation, as assessed by total melanin, eumelanin and pheomelanin contents, and MC1R genotype and function, in determining the induction and repair of DNA photoproducts in cultured human melanocytes after irradiation with increasing doses of UVR. We found that total melanin and eumelanin contents (MC and EC) correlated inversely with the extent of UVR‐induced growth arrest, apoptosis and induction of cyclobutane pyrimidine dimers (CPD), but not with hydrogen peroxide release in melanocytes expressing functional MC1R. In comparison, melanocytes with loss‐of‐function MC1R, regardless of their MC or EC, sustained more UVR‐induced apoptosis and CPD, and exhibited reduced CPD repair. Therefore, MC, mainly EC, and MC1R function are independent determinants of UVR‐induced DNA damage in melanocytes.  相似文献   

11.
Inflammatory cytokines are closely related to pigmentary changes. In this study, the effects of IFN‐γ on melanogenesis were investigated. IFN‐γ inhibits basal and α‐MSH‐induced melanogenesis in B16 melanoma cells and normal human melanocytes. MITF mRNA and protein expressions were significantly inhibited in response to IFN‐γ. IFN‐γ inhibited CREB binding to the MITF promoter but did not affect CREB phosphorylation. Instead, IFN‐γ inhibited the association of CBP and CREB through the increased association between CREB binding protein (CBP) and STAT1. These findings suggest that IFN‐γ inhibits both basal and α‐MSH‐induced melanogenesis by inhibiting MITF expression. The inhibitory action of IFN‐γ in α‐MSH‐induced melanogenesis is likely to be associated with the sequestration of CBP via the association between CBP and STAT1. These data suggest that IFN‐γ plays a role in controlling inflammation‐ or UV‐induced pigmentary changes.  相似文献   

12.
The melanocortins (α‐melanocyte‐stimulating hormone and adrenocorticotropin) act on epidermal melanocytes to increase melanogenesis, the eumelanin/pheomelanin ratio and dendricity. These actions are mediated by the heptahelical melanocortin 1 receptor (MC1R), positively coupled to adenylyl cyclase. Gain‐of‐function mouse Mc1r alleles are associated with a dark, eumelanic coat. Conversely, loss‐of‐function variants, or overexpression of agouti, a natural melanocortin antagonist, yield yellow, pheomelanic furs. In humans, loss‐of‐function MC1R variants are associated with fair skin, poor tanning, propensity to freckle and increased skin cancer risk. Therefore, MC1R is a key regulator of mammalian pigmentation. Several observations such as induction of constitutive pigmentation in amelanotic mouse melanoma cells following expression of MC1R indicate that the receptor might display agonist‐independent activity. We report a systematic and comparative study of MC1R and Mc1r constitutive activity. We show that expression of MC1R in heterologous systems leads to an agonist‐independent increase in cyclic adenosine monophophate (cAMP). Basal signalling is a function of receptor expression and is two to fourfold higher for MC1R than for Mc1r. Moreover, it is observed in human melanoma cells over‐expressing the MC1R. Constitutive signalling is abolished or reduced by point mutations of MC1R impairing the response to agonists, and is only doubled by the Lys94Glu mutation, mimicking the constitutively active mouse Eso‐3J allele. Stable or transient expression of wild‐type MC1R, but not of loss‐of‐function mutants, potently stimulates forskolin activation of adenylyl cyclase, a common feature of constitutively active Gs‐coupled receptors. Therefore, human MC1R displays a strong agonist‐independent constitutive activity.  相似文献   

13.
14.
Coinheritance of germline mutation in cyclin‐dependent kinase inhibitor 2A (CDKN2A) and loss‐of‐function (LOF) melanocortin 1 receptor (MC1R) variants is clinically associated with exaggerated risk for melanoma. To understand the combined impact of these mutations, we established and tested primary human melanocyte cultures from different CDKN2A mutation carriers, expressing either wild‐type MC1R or MC1RLOF variant(s). These cultures expressed the CDKN2A product p16 (INK4A) and functional MC1R. Except for 32ins24 mutant melanocytes, the remaining cultures showed no detectable aberrations in proliferation or capacity for replicative senescence. Additionally, the latter cultures responded normally to ultraviolet radiation (UV) by cell cycle arrest, JNK, p38, and p53 activation, hydrogen peroxide generation, and repair of DNA photoproducts. We propose that malignant transformation of melanocytes expressing CDKN2A mutation and MC1RLOF allele(s) requires acquisition of somatic mutations facilitated by MC1R genotype or aberrant microenvironment due to CDKN2A mutation in keratinocytes and fibroblasts.  相似文献   

15.
Secondary metabolites and synthetic iminosugars that structurally resemble monosaccharides are potent inhibitors of α‐glucosidase activity. The enzyme is core in cleaving sucrose in phloem feeding insects and it also plays a crucial role of reducing osmotic stress via the formation of oligosaccharides. Inhibition of hydrolysis by iminosugars should result in nutritional deficiencies and/or disruption of normal osmoregulation. Deoxynojirimycin (DNJ) and 2 N‐alkylated analogs [N‐butyl DNJ (NB‐DNJ) and N‐nonyl DNJ (NN‐DNJ)] were the major iminosugars used throughout the study. The extensive experiments conducted with α‐glucosidase of the whitefly Bemisia tabaci indicated the competitive nature of inhibition and that the hydrophilic DNJ is a potent inhibitor in comparison to the more hydrophobic NB‐DNJ and NN‐DNJ compounds. The same inhibitory pattern was observed with the psyllid Cacopsylla bidens α‐glucosidase. In contrast to the above pattern, enzymes of the aphids, Myzus persicae and Aphis gossypii were more sensitive to the hydrophobic iminosugars as compared to DNJ. In vivo experiments in which adult B. tabaci were fed dietary iminosugars, show that the hydrophilic DNJ was far less toxic than the lipophilic NB‐DNJ and NN‐DNJ. It is proposed that this pattern is attributed to the better accessibility of the hydrophobic NN‐DNJ to the α‐glucosidase membrane‐bound compartment in the midgut. Based on the inhibitory effects of certain polyhydroxy N‐alkylated iminosugars, α‐glucosidase of phloem feeding hemipterans could serve as an attractive target site for developing novel pest control agents.  相似文献   

16.
The melanotropic actions of α‐melanocyte‐stimulating hormone (α‐MSH) and other melanocortins are mediated by activation of the melanocortin 1 receptor (MC1R). This G protein‐coupled receptor is positively coupled to Gs and triggers the cyclic adenosine mono‐phosphate (cAMP) pathway. Mutations of the MC1R gene are associated with skin type and pigmentation phenotypes, and with increased risk of skin cancers. Genetic studies have demonstrated an heterozygote carrier effect for these associations, suggesting the importance of variant allele dosage. This could be accounted for, at least partially, if the number of MC1R molecules, rather than the Gs protein or the effector enzyme, adenylyl cyclase, is limiting for the activation of the signalling pathway. However, the nature of the limiting factor(s) in MC1R signalling has not been investigated. We addressed this question by comparing the cAMP output of clones of human melanoma cell lines enriched in MC1R by stable transfection. We also analysed heterologous cell systems widely used for functional studies of MC1R. We show that cAMP production in clones of Chinese hamster ovary cells stably expressing the MC1R is a linear function of receptor number up to high, supraphysiological levels of approximately 50 000 α‐MSH binding sites per cell. Enrichment of human melanoma cell lines with MC1R also results in increased cAMP levels, with a small leftward shift of the agonist dose–response curves. Therefore, at physiological expression levels second‐messenger generation is dependent on receptor density. Within melanoma cells and also likely in normal melanocytes, MC1R appears the limiting factor controlling the output of the cAMP signalling pathway.  相似文献   

17.
The melanocortin 1 receptor (MC1R), a Gs protein‐coupled receptor (GPCR) expressed in melanocytes, is a major determinant of skin pigmentation and phototype. MC1R activation stimulates melanogenesis and increases the ratio of black, strongly photoprotective eumelanins to reddish, poorly photoprotective pheomelanins. Several MC1R alleles are associated with red hair, fair skin, increased sensitivity to ultraviolet radiation (the RHC phenotype) and increased skin cancer risk. Three highly penetrant RHC variants, R151C, R160W, and D294H are loss‐of‐function MC1R mutants with altered cell surface expression. In this study, we show that forward trafficking was normal for D294H. Conversely, export traffic was impaired for R151C, which accumulated in the endoplasmic reticulum (ER), and for R160W, which was enriched in the cis‐Golgi. This is the first report of steady‐state retention in a post‐ER secretory compartment of a GPCR mutant found in the human population. Residues R151 and R160 are located in the MC1R second intracellular loop (il2). Two other mutations in il2, T157A preventing T157 phosphorylation and R162P disrupting a 160RARR163 motif, also caused intracellular retention. Moreover, T157 was phosphorylated in wild‐type MC1R and a T157D mutation mimicking constitutive phosphorylation allowed normal traffic, and rescued the retention phenotype of R160W and R162P. Therefore, MC1R export is likely regulated by T157 phosphorylation and the 160RARR163 arginine‐based motif functions as an ER retrieval signal. These elements are conserved in mammalian MC1Rs and in all five types of human melanocortin receptors. Thus, members of this GPCR subfamily might share common mechanisms for regulation of plasma membrane expression. J. Cell. Physiol. 220: 640–654, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Aims: To characterize of a thermostable recombinant α‐l ‐arabinofuranosidase from Caldicellulosiruptor saccharolyticus for the hydrolysis of arabino‐oligosaccharides to l ‐arabinose. Methods and Results: A recombinant α‐l ‐arabinofuranosidase from C. saccharolyticus was purified by heat treatment and Hi‐Trap anion exchange chromatography with a specific activity of 28·2 U mg?1. The native enzyme was a 58‐kDa octamer with a molecular mass of 460 kDa, as measured by gel filtration. The catalytic residues and consensus sequences of the glycoside hydrolase 51 family of α‐l ‐arabinofuranosidases were completely conserved in α‐l ‐arabinofuranosidase from C. saccharolyticus. The maximum enzyme activity was observed at pH 5·5 and 80°C with a half‐life of 49 h at 75°C. Among aryl‐glycoside substrates, the enzyme displayed activity only for p‐nitrophenyl‐α‐l ‐arabinofuranoside [maximum kcat/Km of 220 m(mol l?1)?1 s?1] and p‐nitrophenyl‐α‐l ‐arabinopyranoside. This substrate specificity differs from those of other α‐l ‐arabinofuranosidases. In a 1 mmol l?1 solution of each sugar, arabino‐oligosaccharides with 2–5 monomer units were completely hydrolysed to l ‐arabinose within 13 h in the presence of 30 U ml?1 of enzyme at 75°C. Conclusions: The novel substrate specificity and hydrolytic properties for arabino‐oligosaccharides of α‐l ‐arabinofuranosidase from C. saccharolyticus demonstrate the potential in the commercial production of l ‐arabinose in concert with endoarabinanase and/or xylanase. Significance and Impact of the Study: The findings of this work contribute to the knowledge of hydrolytic properties for arabino‐oligosaccharides performed by thermostable α‐l ‐arabinofuranosidase.  相似文献   

19.
Cell motility is dependent on a dynamic meshwork of actin filaments that is remodelled continuously. A large number of associated proteins that are severs, cross‐links, or caps the filament ends have been identified and the actin cross‐linker α‐actinin has been implied in several important cellular processes. In Entamoeba histolytica, the etiological agent of human amoebiasis, α‐actinin is believed to be required for infection. To better understand the role of α‐actinin in the infectious process we have determined the solution structure of the C‐terminal calmodulin‐like domain using NMR. The final structure ensemble of the apo form shows two lobes, that both resemble other pairs of calcium‐binding EF‐hand motifs, connected with a mobile linker. Proteins 2016; 84:461–466. © 2016 Wiley Periodicals, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号