首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the most controversial issues in immunology for over a century has been whether an effective immune response can be elicited against malignant tumours. Whether the immunology community has believed cancer immunotherapy is feasible or impossible has been largely determined by the prevailing immunological paradigms at that time. In fact, during the last 110 years it is possible to trace at least five dramatic fluctuations in attitude towards cancer immunotherapy. It now appears, however, that overwhelming evidence is available to support the view that both the innate and adaptive immune responses can recognize and eliminate tumours. On the other hand, it remains to be seen if these immune responses can be harnessed to control cancer as, at the time of diagnosis, many tumours have already been immunoselected to be highly resistant to immune elimination. Based on these observations it is argued that immunotherapy approaches, other than the generation of tumour-specific cytotoxic T lymphocytes, must be explored. Alternative strategies include recruiting tumouricidal myeloid cells into tumours, generating antiangiogenic immune responses and directing innate immunity to hypoxia-induced ligands on tumour cells.  相似文献   

2.
Oncolytic virus immunotherapy is rapidly gaining interest in the field of immunotherapy against cancer. The minimal toxicity upon treatment and the dual activity of direct oncolysis and immune activation make therapy with oncolytic viruses (OVs) an interesting treatment modality. The safety and efficacy of several OVs have been assessed in clinical trials and, so far, the Food and Drug Administration (FDA) has approved one OV. Unfortunately, most treatments with OVs have shown suboptimal responses in clinical trials, while they appeared more promising in preclinical studies, with tumours reducing after immune cell influx. In several clinical trials with OVs, parameters such as virus replication, virus-specific antibodies, systemic immune responses, immune cell influx into tumours and tumour-specific antibodies have been studied as predictors or correlates of therapy efficacy. In this review, these studies are summarized to improve our understanding of the determinants of the efficacy of OV therapies in humans and to provide insights for future developments in the viro-immunotherapy treatment field.  相似文献   

3.
The treatment of human melanoma has progressed markedly in recent years. Building on the observation that immune recognition is a frequent event in melanoma, a series of immunotherapeutic approaches have been evaluated in clinical trials, culminating in the first phase III study improving overall survival of melanoma patients since 20 years. However, the response rates seen upon immunotherapeutic interventions such as anti-CTLA4 treatment are often low. Furthermore, clinical responses can take several weeks to develop, during which time stage IV melanoma patients often deteriorate. Recent advances in our understanding of the genetic lesions in human melanoma now also allow the specific targeting of the signaling pathway alterations in this disease. Such targeted therapies can lead to high response rates, although the duration of these responses is thus far relatively short. We suggest that the combination of immuno and targeted therapy offers potential for synergy for both conceptual and practical reasons. In this review, we will discuss the potential and possible limitations for such combination therapy, and we describe the most promising combinations of targeted therapy and immunotherapy that can be tested in the clinic in the coming years. The concept of induction therapy by small molecule administration and consolidation by immunotherapeutics also has potential for the treatment of other human cancers.  相似文献   

4.
Despite their well-documented immunogenicity, malignant melanomas belong to the most aggressive tumor types. A potential explanation for this is the suboptimal activation of tumor infiltrating T cells. In order to boost immune responses against tumors, a variety of treatment modalities have been tested in animal models and in clinical setting. Antigen-nonspecific approaches (e.g., IFN-alpha and IL-2), as well as active specific immunotherapeutical modalities based on the use of autologous or allogeneic tumor cell-save been investigated in clinical trials of melanoma. The identification of melanoma-associated antigens has opened new avenues in antigen-specific immunotherapy. A promising alternative for the delivery of different forms of melanoma antigens is the application of dendritic cells, the most potent antigen presenting cells capable of eliciting efficient T-cell response. Beside active immunotherapy, immune response against melanoma antigens could be increased through the adoptive transfer of tumor infiltrating lymphocytes or antigen specific T-cell clones. The most important conclusion that can be drawn from the results of published immunotherapy studies is that these modalities are able to induce durable complete tumor regressions,mostly with reasonable toxicity; however, generally only in a minority of patients. This points to the importance of appropriate patient selection, with regard to the expression of the targeted antigens and HLA molecules, as well as to the general immunocompetence of the patients. A crucial and still unsolved question is monitoring immune activation during treatment, although there are promising new tools that could prove useful in this respect. The presence of tumor-reactive CTL in the circulation or in the tumors does not guarantee an efficient immune response. It is important to assess if these T cells are in an activated and functional state. Finally, in several single target antigen-based clinical studies a therapy-induced immunoselection of antigen-negative clones, leading to disease progression, was observed. This could be overcome with the use of antigen cocktails or whole tumor approaches. A better understanding of the mechanisms of action of immunotherapeutical modalities may enhance the success rate of these strategies.  相似文献   

5.
Over the last few years, several newly developed immune-based cancer therapies have been shown to induce clinical responses in significant numbers of patients. As a result, there is a need to identify immune biomarkers capable of predicting clinical response. If there were laboratory parameters that could define patients with improved disease outcomes after immunomodulation, product development would accelerate, optimization of existing immune-based treatments would be facilitated and patient selection for specific interventions might be optimized. Although there are no validated cancer immunologic biomarkers that are predictive of clinical response currently in widespread use, there is much published literature that has informed investigators as to which markers may be the most promising. Population-based studies of endogenous tumor immune infiltrates and gene expression analyses have identified specific cell populations and phenotypes of immune cells that are most likely to mediate anti-tumor immunity. Further, clinical trials of cancer vaccines and other cancer directed immunotherapy have identified candidate immunologic biomarkers that are statistically associated with beneficial clinical outcomes after immune-based cancer therapies. Biomarkers that measure the magnitude of the Type I immune response generated with immune therapy, epitope spreading, and autoimmunity are readily detected in the peripheral blood and, in clinical trials of cancer immunotherapy, have been associated with response to treatment.  相似文献   

6.
A solid scientific basis now supports the concept that cytotoxic T lymphocytes can specifically recognize and destroy melanoma cells. Over the last decades, clinicians and basic scientists have joined forces to advance our concepts of melanoma immunobiology. This has catalyzed the rational development of therapeutic approaches to enforce melanoma‐specific T cell responses. Preclinical studies in experimental mouse models paved the way for their successful translation into clinical benefit for patients with metastatic melanoma. A more thorough understanding of how melanomas develop resistance to T cell immunotherapy is necessary to extend this success. This requires a continued interdisciplinary effort of melanoma biologists and immunologists that closely connects clinical observations with in vitro investigations and appropriate in vivo mouse models: From bedside to bench to barn and back.  相似文献   

7.
Direct treatments of cancer such as chemotherapy, radiotherapy and targeted therapy have been shown to depend on recruitment of the immune system for their effectiveness. Recent studies have shown that development of resistance to direct therapies such as BRAF inhibitors in melanoma is associated with suppression of immune responses. We point to emerging data that implicate activation of the polycomb repressive complex 2 (PRC2) and its catalytic component—enhancer of zeste homolog 2 (EZH2)—in progression of melanoma and suppression of immune responses. EZH2 appears to have an important role in differentiation of CD4 T cells and particularly in the function of T regulatory cells, which suppress immune responses to melanoma. We review mechanisms of EZH2 activation at the genomic level and from activation of the MAP kinase, E2F or NF‐kB2 pathways. These studies are consistent with activation of EZH2 as a common mechanism for induction of immune suppression in patients failing direct therapies and suggest EZH2 inhibitors may have a role in combination with immunotherapy and targeted therapies to prevent development of immunosuppression.  相似文献   

8.
The wide range of currently available treatments for metastatic prostate cancer have demonstrated a modest palliative effect, but none to date has shown an increase in overall survival. The immune system has evolved to protect against infection, however, the modulation of this system represents the possibility of allowing it to identify and destroy cancer cells. The immune system is capable of inciting a powerful immune response against tissues, in the form of transplant rejection, and the potential exists to harness these powers to fight against tumors. Modest clinical responses have been seen in patients with metastatic prostate cancer treated with DC therapies; however, no increase in overall survival has been demonstrated. The current state of DC immunotherapy for prostate cancer is reviewed.  相似文献   

9.
Most tumours arise from a single normal cell through a sequential evolutionary process of mutation and selection. Tumours are initiated by escaping non‐immune surveillance, which includes defective DNA repair, epigenetic gene alternation, resistance to apoptosis and loss of intercellular contact inhibition. Tumour cells harbour mutations in a number of critical genes that provide selective advantages at various stages during the evolution of the tumour. The tumour cells that circumvent the tumour suppressor mechanisms of the non‐immune surveillance process are edited by the immune system, resulting in the selection of a resistant tumour variant. The selection of the tumour cell is further shaped by its interactions with cells and other factors in its microenvironment. Tumour evolution is thought to adhere to Darwinian principles by escaping both non‐immune (intrinsic) and immune (extrinsic) responses against self‐altered tumour cells. At end‐stage, tumours have escaped both non‐immune and immune surveillance with increased threshold of apoptosis. Combination therapy has been proposed, by exploring the non‐immune and immune suppressive nature of the tumour, and has been found to have a therapeutic efficiency on tumour regression as compared with monotherapies. The combination of immunotherapy and other different modalities, especially vaccines, with conventional anticancer therapies with optimized dosage and scheduling can offer synergistic antitumour effects. Here, we focus on the mechanism of tumour evolution and its implication in combination therapy.  相似文献   

10.
Over the last decade, immunotherapy has emerged as a hopeful alternative in cancer therapy. Different drugs are used to stimulate the immune system and block negative immune regulatory pathways, known as “immune checkpoint inhibitors (ICI)”. Although clinical studies have reported efficacy and safety with the use of ICI, only a small group of patients have obtained a clinical benefit. Because of this, immunomodulation based on immunogenic cell death produced by radiotherapy (RT) has been well positioned as an alternative to increase the clinical effect on the primary neoplasm, but also in distant tumours, a phenomenon known as the “abscopal effect”. Early clinical outcomes with RT-ICI combination are promising, but the rate of abscopal responses remains low. These developments have opened a path to evaluate the use of nanotechnology as antigen-capturing nanoparticles (AC-NPs) for improving clinical outcomes in metastatic disease treated with RT-ICI. In this review, we aim to highlight the basic characteristics of nanoparticles and its application in oncology, focusing on their potential to enhance abscopal responses.  相似文献   

11.

Background

Malignant melanoma is the deadliest form of skin cancer and is refractory to conventional chemotherapy and radiotherapy. Therefore alternative approaches to treat this disease, such as immunotherapy, are needed. Melanoma vaccine design has mainly focused on targeting CD8+ T cells. Activation of effector CD8+ T cells has been achieved in patients, but provided limited clinical benefit, due to immune-escape mechanisms established by advanced tumors. We have previously shown that alphavirus-based virus-like replicon particles (VRP) simultaneously activate strong cellular and humoral immunity against the weakly immunogenic melanoma differentiation antigen (MDA) tyrosinase. Here we further investigate the antitumor effect and the immune mechanisms of VRP encoding different MDAs.

Methodology/Principal Findings

VRP encoding different MDAs were screened for their ability to prevent the growth of the B16 mouse transplantable melanoma. The immunologic mechanisms of efficacy were investigated for the most effective vaccine identified, focusing on CD8+ T cells and humoral responses. To this end, ex vivo immune assays and transgenic mice lacking specific immune effector functions were used. The studies identified a potent therapeutic VRP vaccine, encoding tyrosinase related protein 2 (TRP-2), which provided a durable anti-tumor effect. The efficacy of VRP-TRP2 relies on a novel immune mechanism of action requiring the activation of both IgG and CD8+ T cell effector responses, and depends on signaling through activating Fcγ receptors.

Conclusions/Significance

This study identifies a VRP-based vaccine able to elicit humoral immunity against TRP-2, which plays a role in melanoma immunotherapy and synergizes with tumor-specific CD8+ T cell responses. These findings will aid in the rational design of future immunotherapy clinical trials.  相似文献   

12.
Therapeutic targeting of melanoma antigens frequently focuses on the melanocyte differentiation or cancer-testis families. Antigen-loss variants can often result, as these antigens are not critical for tumor cell survival. Exploration of functionally relevant targets has been limited. The melanoma inhibitor of apoptosis protein (ML-IAP; livin) is overexpressed in melanoma, contributing to disease progression and treatment resistance. Improved understanding of the significance of ML-IAP immune responses in patients has possible therapeutic applications. We found ML-IAP frequently expressed in melanoma metastases by immunohistochemistry. To assess spontaneous immunity to ML-IAP, an overlapping peptide library representing full-length protein was utilized to screen cellular responses in stage I–IV patients and healthy controls by ELISPOT. A broad array of CD4+ and CD8+ cellular responses against ML-IAP was observed with novel class I and class II epitopes identified. Specific HLA-A*0201 epitopes were analyzed further for frequency of reactivity. The generation of specific CD4+ and cytotoxic T cells revealed potent functional capability including cytokine responsiveness to melanoma cell lines and tumor cell killing. In addition, recombinant ML-IAP protein used in an ELISA demonstrated high titer antibody responses in a subset of patients. Several melanoma patients who received CTLA-4 blockade with ipilimumab developed augmented humoral immune responses to ML-IAP as a function of treatment which was associated with beneficial clinical outcomes. High frequency immune responses in melanoma patients, associations with favorable treatment outcomes, and its essential role in melanoma pathogenesis support the development of ML-IAP as a disease marker and therapeutic target.  相似文献   

13.
Immune checkpoint inhibitors improved the survival rate of patients with unresectable melanoma. However, some patients do not respond, and variable immune‐related adverse events have been reported. Therefore, more effective and antigen‐specific immune therapies are urgently needed. We previously reported the efficacy of an immune cell therapy with immortalized myeloid cells derived from induced pluripotent stem cells (iPS‐ML). In this study, we generated OX40L‐overexpressing iPS‐ML (iPS‐ML‐Zsgreen‐OX40L) and investigated their characteristics and in vivo efficacy against mouse melanoma. We found that iPS‐ML‐Zsgreen‐OX40L suppressed the progression of B16‐BL6 melanoma, and prolonged survival of mice with ovalbumin (OVA)‐expressing B16 melanoma (MO4). The number of antigen‐specific CD8+ T cells was higher in spleen cells treated with OVA peptide‐pulsed iPS‐ML‐Zsgreen‐OX40L than in those without OX40L. The OVA peptide‐pulsed iPS‐ML‐Zsgreen‐OX40L significantly increased the number of tumor‐infiltrating T lymphocytes (TILs) in MO4 tumor. Flow cytometry showed decreased regulatory T cells but increased effector and effector memory T cells among the TILs. Although we plan to use allogeneic iPS‐ML in the clinical applications, iPS‐ML showed the tumorgenicity in the syngeneic mice model. Incorporating the suicide gene is necessary to ensure the safety in the future study. Collectively, these results indicate that iPS‐ML‐Zsgreen‐OX40L therapy might be a new method for antigen‐specific cancer immunotherapy.  相似文献   

14.
Patients with melanoma may develop skin depigmentation spontaneously or following therapy, referred to as melanoma‐associated leucoderma (MAL). As clinical presentation of MAL may precede primary/metastatic melanoma detection, recognition of MAL is important to prevent its misdiagnosis as vitiligo and the subsequent application of immunosuppressive treatment. To reveal the immunity involved in MAL development, we investigated the presence of antibody and T‐cell immune responses directed against the melanocyte‐differentiation‐antigens MART‐1 (Melan‐A), tyrosinase and gp100 in patients with MAL, as compared to patients with vitiligo. Autoantibodies to gp100 and tyrosinase were commonly found in both diseases. Interestingly, MART‐1 antibodies were only present in patients with MAL. Melanocyte antigen‐specific T cells were found in all patients, with relatively more specific T cells in patients with active vitiligo. Although MAL and vitiligo may appear clinically similar, our results indicate that the humoral immune responses against MART‐1 differ between these diseases, which can help to differentiate MAL from vitiligo.  相似文献   

15.
In recent years, studies on the molecular and cellular mechanisms of immune responses against melanoma have contributed to a better understanding of how these tumours can be recognised by cytotoxic cells and the mechanisms they have developed to escape from innate and adaptive immunity. Lysis of melanoma cells by natural killer (NK) cells and cytolytic T cells is the result of a fine balance between signals transmitted by activating and inhibitory receptors. In addition to the T cell receptor, these were initially described as NK cell-associated receptors (NKRs) and were later also found on subsets of T lymphocytes, particularly effector-memory and terminally differentiated CD8 T cells. An increase of NKR(+)CD8(+) T cells has been found in melanoma patients, correlating with the expansion of differentiated effector CD8(+)CD28(null) CD27(null) T cells. NKRs can regulate the lysis of target cells expressing appropriate ligands. Activating receptors recognise ligands on tumours whereas inhibitory receptors are specific for MHC class I antigens and sense missing self. Altered expression of MHC class I antigens is frequently found on melanoma cells, preventing recognition by specific cytolytic T cells but favouring NK cell recognition. Changes in the expression of NKR-ligands in melanoma contribute in explaining the differences in the capacity of cytotoxic immune cells to control melanoma growth and dissemination.  相似文献   

16.
Cancer vaccines have been developed to instruct the endogenous immune responses to autologous tumors and to generate durable clinical responses. However, the therapeutic benefits of cancer vaccines remain insufficient due to the multiple immunosuppressive signals delivered by tumors. Thus, to improve the clinical efficacy of cancer immunotherapy, it is important to develop new modalities to overcome immunosuppressive tumor microenvironments and elicit effective antitumor immune responses. In this study, we show that novel monoclonal antibodies (mAbs) specifically targeting either T cell immunoglobulin mucin protein-3 (TIM-3) or T cell immunoglobulin mucin protein-4 (TIM-4) enhance the therapeutic effects of vaccination against established B16 murine melanomas. This is true for vaccination with irradiated B16 melanoma cells engineered to express the flt3 ligand gene (FVAX). More importantly, combining anti-TIM-3 and anti-TIM-4 mAbs markedly increased vaccine-induced antitumor responses against established B16 melanoma. TIM-3 blockade mainly stimulated antitumor effector activities via natural killer cell-dependent mechanisms, while CD8+ T cells served as the main effectors induced by anti-TIM-4 mAb. Our findings reveal that therapeutic manipulation of TIM-3 and TIM-4 may provide a novel strategy for improving the clinical efficacy of cancer immunotherapy.  相似文献   

17.
18.
Immunotherapy has become a promising modality for melanoma, especially using checkpoint inhibitors, which revive suppressed T cells against the cancer. Such inhibitors should work better when combined with other treatments which could increase the number and quality of anti‐tumor T cells. We treated one patient with advanced (stage IV) melanoma, using the combination of laser immunotherapy (LIT), a novel immunological approach for metastatic cancers that has been shown to stimulate adaptive immunity, and ipilimumab. The patient was treated with LIT, followed with one course of ipilimumab 3 months after the beginning of LIT. After LIT treatment, all treated cutaneous melanoma in head and neck cleared completely. After the application of ipilimumab, all the tumor nodules in the lungs decreased. The patient had remained tumor free for one year. While anecdotal, the responses seen in this patient support the hypothesis that laser immunotherapy increases the number and quality of anti‐tumor T cells so that ipilimumab and other checkpoint inhibitors are more effective in enhancing the therapeutic effects. Picture : Schematic of treatment using laser immunotherapy and ipilimumab on a stage IV melanoma patient.  相似文献   

19.
Numerous immunotherapy treatments for cancer are undergoing clinical trials or are already approved for use. One particular area of interest is targeting mechanisms of immune tolerance. Using a murine model of mesothelioma, we investigated the roles of regulatory T-cells, intratumoural transforming growth factor (TGF)-β and the negative regulator molecule cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) in immune tolerance to tumours. It was found that treatments targeting a single negative regulator molecule mechanism were not as effective against tumours as targeting multiple mechanisms simultaneously. Most importantly, it was found that a combined triple treatment of anti-CD25 monoclonal antibody (mAb), anti-CTLA-4 mAb and TGF-β soluble receptor resulted in long-term clearance of tumours and memory against tumour rechallenge. These data suggest that clinical application of immunotherapies against tumours may be improved by simultaneously targeting multiple mechanisms of immune suppression.  相似文献   

20.
For the last two decades the immunotherapy of patients with solid and hematopoietic tumors has met with variable success. We have reviewed the field of tumor vaccines to examine what has worked and what has not, why this has been the case, how the anti-tumor responses were examined, and how we can make tumor immunity successful for the majority of individuals rather than for the exceptional patients who currently show successful immune responses against their tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号