首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Haloxylon ammodendron (C. A. Mey.) Bunge is a host for the holoparasitic plant Cistanche deserticola Y. C. Ma, the original source of medicinal material known as Herba Cistanchis. The inter-simple sequence repeat marker was used to assess the genetic variations and relationships among six accessions of H. ammodendron with a total of 120 individuals collected from three localities in the Alxa Desert, Inner Mongolia, China. At each locality, individuals both parasitized (PP) by C. deserticola and non-parasitized (NP) were sampled. The results showed that Nei's gene diversity and Shannon's index of PP accessions were higher, but were not significantly different, from those of NP accessions. An unweighted pair-group method arithmetic average dendrogram showed two clusters, one that included all PP accessions, and the other the NP accessions. Genetic differentiation therefore existed between PP and NP accessions, which might be attributed to low gene flow between the NP and PP groups (Nm< 1). However, the relationship between genetic distance and geographic distance within each group, although not statistically significant in this study, might be associated with high gene flow in both the NP and PP groups.  相似文献   

2.
沈亮  徐荣  刘赛  徐常青  贺宁  刘同宁  陈君 《生态学报》2016,36(13):3933-3942
为探索梭梭根际土壤微生物结构特征及其与肉苁蓉寄生的关系,应用磷脂脂肪酸(PLFA)法分析了5—8月份梭梭生长季节的根际土壤微生物种类及群落结构特征,采用湿筛倾注-蔗糖离心法对其根际土壤AM真菌进行了初步分离和鉴定,并分析了肉苁蓉寄生与梭梭根际微生物及环境因子间的相关性。结果表明,5—7月3个月份的梭梭根际土壤微生物磷脂脂肪酸种类及含量均显著高于8月份,总磷脂脂肪酸和AM真菌磷脂脂肪酸以6月份含量最高。梭梭根际土壤共鉴定出AM真菌4属35种,它们分别为球囊霉属(Glomus)22种、无梗囊霉属(Acaulospora)7种、多孢囊霉属(Diversispora)3种和巨孢囊霉属(Gigaspora)3种。其中以黑球囊霉(Glomus melanosporum)和双网无梗囊霉(Acaulospora bireticulata)为优势种群,并且发现了与寄生有关的巨孢囊霉属AM真菌。6月份和8月份的AM真菌孢子数量最多,而5月份的AM真菌孢子数量最低。6月份梭梭根际土壤提取液得到的肉苁蓉种子萌发率(65.94%)和田间接种寄生率(59.19%)均为最高值,而5月份土壤提取液测试得到的肉苁蓉种子萌发率最低。因此,推测梭梭根际AM真菌可能参与了肉苁蓉的寄生过程。相关分析表明梭梭根际土壤微生物种类和数量主要与土壤温湿度和土壤理化性质相关性较大,其中可能与寄生有关的真菌数量与土壤温度呈显著正相关;肉苁蓉寄生率与土壤温度及土壤养分呈显著负相关。研究为解析梭梭根际土壤微生物在肉苁蓉寄生过程中的作用以及指导肉苁蓉人工种植提供参考。  相似文献   

3.
Calochortus (Liliaceae) displays high species richness, restriction of many individual taxa to narrow ranges, geographic coherence of individual clades, and parallel adaptive radiations in different regions. Here we test the first part of a hypothesis that all of these patterns may reflect gene flow at small geographic scales. We use amplified fragment length polymorphism variation to quantify the geographic scales of spatial genetic structure and apparent gene flow in Calochortus albus, a widespread member of the genus, at Henry Coe State Park in the Coast Ranges south of San Francisco Bay. Analyses of 254 mapped individuals spaced 0.001–14.4 km apart show a highly significant decline in genetic identity with ln distance, implying a root‐mean‐square distance of gene flow σ of 5–43 m. STRUCTURE analysis implies the existence of 2–4 clusters over the study area, with frequent reversals among clusters over short distances (<200 m) and a relatively high frequency of admixture within individuals at most sampling sites. While the intensity of spatial genetic structure in C. albus is weak, as measured by the Sp statistic, that appears to reflect low genetic identity of adjacent plants, which might reflect repeated colonizations at small spatial scales or density‐dependent mortality of individual genotypes by natural enemies. Small spatial scales of gene flow and spatial genetic structure should permit, under a variety of conditions, genetic differentiation within species at such scales, setting the stage ultimately for speciation and adaptive radiation as such scales as well.  相似文献   

4.
This is the first report to explore the fine‐scale diversity, population genetic structure, and biogeography of a typical planktonic microbe in Japanese and Korean coastal waters and also to try to detect the impact of natural and human‐assisted dispersals on the genetic structure and gene flow in a toxic dinoflagellate species. Here we present the genetic analysis of Alexandrium tamarense (Lebour) Balech populations from 10 sites along the Japanese and Korean coasts. We used nine microsatellite loci, which varied widely in number of alleles and gene diversity across populations. The analysis revealed that Nei's genetic distance correlated significantly with geographic distance in pair‐wise comparisons, and that there was genetic differentiation in about half of 45 pair‐wise populations. These results clearly indicate genetic isolation among populations according to geographic distance and restricted gene flow via natural dispersal through tidal currents among the populations. On the other hand, high P‐values in Fisher's combined test were detected in five pair‐wise populations, suggesting similar genetic structure and a close genetic relationship between the populations. These findings suggest that the genetic structure of Japanese A. tamarense populations has been disturbed, possibly by human‐assisted dispersal, which has resulted in gene flow between geographically separated populations.  相似文献   

5.
Pomegranate Punica granatum was first introduced to Sri Lanka, possibly through ancient trade routes, thousands of years ago. However, there is no information about the diversity of the pomegranate germplasm in the country, which is important both for breeding new varieties and for conservation efforts. We used inter‐simple sequence repeat (ISSR) regions to investigate the genetic diversity and population structure of pomegranate on the island of Sri Lanka. Hundred and twenty accessions representing seven populations from all pomegranate growing regions of the country were analyzed using 20 ISSR primers. A total of 107 loci were amplified with an average polymorphism information content of 0.3. While the average inter‐population genetic distance was 0.141, it was 0.149 between populations, indicating moderate genetic diversity both within and among populations. Analysis of molecular variance and Nei's genetic diversity revealed higher genetic variation within populations than among populations, and low genetic differentiation (GST) in pair‐wise comparison of populations also suggested limited population differentiation. A considerable level of among‐population gene flow (Nm) was indicated, irrespective of geographical structure and distances. The results of cluster analysis was also in agreement with above analysis and suggest human mediated gene flow and migration patterns. Cluster analysis revealed two main population clusters with several sub‐clusters. While these clusters did not show any correlation with geography, all red peeled accessions clustered into a small sub‐cluster. The results indicate that analysis of ISSR variability is sufficiently informative and powerful to assess the genetic diversity of P. granatum landraces in Sri Lanka.  相似文献   

6.
Low‐latitudinal range margins of temperate and boreal plant species typically consist of scattered populations that persist locally in microrefugia. It remains poorly understood how their refugial habitats affect patterns of gene flow and connectivity, key components for their long‐term viability and evolution. We examine landscape‐scale patterns of historical and contemporary gene flow in refugial populations of the widespread European forest tree Pedunculate oak (Quercus robur) at the species' southwestern range margin. We sampled all adult trees (= 135) growing in a 20 km long valley and genotyped 724 acorns from 72 mother trees at 17 microsatellite loci. The ten oak stands that we identified were highly differentiated and formed four distinct genetic clusters, despite sporadic historical dispersal being detectable. By far most contemporary pollination occurred within stands, either between local mates (85.6%) or through selfing (6.8%). Pollen exchange between stands (2.6%) was remarkably rare given their relative proximity and was complemented by long‐distance pollen immigration (4.4%) and hybridization with the locally abundant Quercus pyrenaica (0.6%). The frequency of between‐stand mating events decreased with increasing size and spatial isolation of stands. Overall, our results reveal outstandingly little long‐distance gene flow for a wind‐pollinated tree species. We argue that the distinct landscape characteristics of oaks' refugial habitats, with a combination of a rugged topography, dense vegetation and humid microclimate, are likely to increase plant survival but to hamper effective long‐distance pollen dispersal. Moreover, local mating might be favoured by high tree compatibility resulting from genetic purging in these long‐term relict populations.  相似文献   

7.
Analyses of the genetic population structure of spotted seatrout Cynoscion nebulosus along the south‐eastern U.S. coast using 13 microsatellites suggest significant population differentiation between fish in North Carolina (NC) compared with South Carolina (SC) and Georgia (GA), with New River, NC, serving as an area of integration between northern and southern C. nebulosus. Although there is a significant break in gene flow between these areas, the overall pattern throughout the sampling range represents a gradient in genetic diversification with the degree of geographic separation. Latitudinal distance and estuarine density appear to be main drivers in the genetic differentiation of C. nebulosus along the south‐eastern U.S. coast. The isolation‐by‐distance gene‐flow pattern creates fine‐scale differences in the genetic composition of proximal estuaries and dictates that stocking must be confined to within 100 km of the location of broodstock collection in order to maintain the natural gradient of genetic variation along the south‐eastern U.S. coast.  相似文献   

8.
为了解海南岛油茶(Camellia oleifera)种质资源的遗传多样性,采用SRAP分子标记,对海南岛油茶主要分布区的31个居群进行了遗传多样性和亲缘关系分析。结果表明,海南岛油茶资源的遗传多样性低,物种水平的多态性百分率(PPB)为98.30%,Nei’s基因多样性(H)为0.222 8,Shannon信息指数(I)为0.353 8;居群水平的PPB=40.96%,观测等位基因数(Na)为1.409 6,有效等位基因数(Ne)为1.237 1, H=0.138 5, I=0.208 3,这与海南岛油茶丰富的表型多样性水平不一致。海南岛油茶资源遗传分化较大,居群间基因交流有限,不同居群间的遗传分化指数(Gst)为0.380,基因流(Nm)为0.813 91。遗传变异主要发生在居群内,有38.05%的变异存在居群间,61.95%存在于居群内。遗传距离为0.022 6~0.276 4,平均为0.107 7,居群间的亲缘关系较近。UPGMA聚类分析表明,在遗传距离为0.11处,可将31个油茶居群聚为6类,表现出明显的行政区域性,而与地理距离关系不大。因此,海南岛油茶资源遗传多样性低,亲缘关系近可能导致自交或近交不亲和,可能是海南油茶林分花量大而结实低的主要内在原因。  相似文献   

9.
Population structure is a potential problem when testing for adaptive phenotypic differences among populations. The observed phenotypic differences among populations can simply be due to genetic drift, and if the genetic distance between them is not considered, the differentiation may be falsely interpreted as adaptive. Conversely, adaptive and demographic processes might have been tightly associated and correcting for the population structure may lead to false negatives. Here, we evaluated this problem in the cosmopolitan weed Capsella bursa‐pastoris. We used RNA‐Seq to analyse gene expression differences among 24 accessions, which belonged to a much larger group that had been previously characterized for flowering time and circadian rhythm and were genotyped using genotyping‐by‐sequencing (GBS) technique. We found that clustering of accessions for gene expression retrieved the same three clusters that were obtained with GBS data previously, namely Europe, the Middle East and Asia. Moreover, the three groups were also differentiated for both flowering time and circadian rhythm variation. Correction for population genetic structure when analysing differential gene expression analysis removed all differences among the three groups. This may suggest that most differences are neutral and simply reflect population history. However, geographical variation in flowering time and circadian rhythm indicated that the distribution of adaptive traits might be confounded by population structure. To bypass this confounding effect, we compared gene expression differentiation between flowering ecotypes within the genetic groups. Among the differentially expressed genes, FLOWERING LOCUS C was the strongest candidate for local adaptation in regulation of flowering time.  相似文献   

10.
Chromosome rearrangements may affect the rate and patterns of gene flow within species, through reduced fitness of structural heterozygotes or by reducing recombination rates in rearranged areas of the genome. While the effects of chromosome rearrangements on gene flow have been studied in a wide range of organisms with monocentric chromosomes, the effects of rearrangements in holocentric chromosomes—chromosomes in which centromeric activity is distributed along the length of the chromosome—have not. We collected chromosome number and molecular genetic data in Carex scoparia, an eastern North American plant species with holocentric chromosomes and highly variable karyotype (2n = 56–70). There are no deep genetic breaks within C. scoparia that would suggest cryptic species differentiation. However, genetic distance between individuals is positively correlated with chromosome number difference and geographic distance. A positive correlation is also found between chromosome number and genetic distance in the western North American C. pachystachya (2n = 74–81). These findings suggest that geographic distance and the number of karyotype rearrangements separating populations affect the rate of gene flow between those populations. This is the first study to quantify the effects of holocentric chromosome rearrangements on the partitioning of intraspecific genetic variance.  相似文献   

11.
We investigated the expression profiles and genomic organisation of the ABA‐responsive genes encoding protein phosphatases 2C (PP2C, group A members) in Brassica oleracea to better understand their functional and genetic relations. Gene expression profiling of drought responsive genes in B. oleracea and Arabidopsis thaliana revealed significant differences in the gene expression pattern of a key regulator of ABA signalling—ABI1 PP2C. This finding prompted us to study genetic relations within the PP2Cs group A in the Brassica species. Twenty homologous B. oleracea sequences were identified and characterised as putative PP2C group A members. Phylogenetic analysis revealed that the B. oleracea homologues were closely related to the particular members of the A. thaliana PP2C. The genetic analysis corroborated the presence of two to three gene copies in B. oleracea in comparison to the nine unique PP2C genes in the A. thaliana genome. Gene expression analyses showed significant differences in PP2C gene expression pattern in B. oleracea. Our results indicate that PP2C‐based drought stress signalling in B. oleracea has evolved distinctly. Different reactions of particular B. oleracea PP2C genes to drought stress and ABA treatment indicate low conservation of gene expression patterns and functional divergence between B. oleracea and A. thaliana homologous genes.  相似文献   

12.
  • 1 Earlier population genetic spatial analysis of European corn borer Ostrinia nubilalis (Hübner) indicated no genetic differentiation even between locations separated by 720 km. This result suggests either high dispersal resulting in high gene flow or that populations are not in migration–drift equilibrium subsequent to their invasion of the central U.S.A. in the 1940s.
  • 2 To discriminate among these two possibilities, samples were collected at 12 locations in eight states from New York to Colorado, a geographic scale that is three‐fold greater than previously tested. Eight microsatellite markers were employed to estimate genetic differentiation and gene flow among these populations, and to test for isolation‐by‐distance.
  • 3 Although pairwise FST estimates were very low, there was a significant isolation‐by‐distance relationship.
  • 4 Wright's neighbourhood area (i.e. the surface area covered by a panmictic group of individuals within a larger continuous distribution) was calculated as 433 km2, and the radius indicates that approximately 13% of O. nubilalis adults disperse a net distance >12 km per generation from their natal source.
  • 5 Analyses indicated significant differentiation between the north‐eastern region (New York and Pennsylvania) and the region combining sample locations from Ohio to Colorado, suggesting the potential for isolation of populations by topographic barriers in the Northeast.
  • 6 Taken together, the results suggest that O. nubilalis exhibits substantial gene flow over long distances and that the lack of genetic differentiation between populations across hundreds of kilometres is not simply a result of migration–drift disequilibrium arising from the recent range expansion.
  相似文献   

13.
Self‐superparasitism can be profitable (i.e., a fitness gain) when conspecific female adult parasitoids prefer singly parasitized hosts over doubly parasitized hosts. This preference is expected to evolve when the value (i.e., the fitness gain from oviposition) of doubly parasitized hosts is lower than that of singly parasitized hosts. We examined whether such a preference is found in the small brown planthopper, Laodelphax striatellus (Fallén) (Homoptera: Delphacidae), and its semisolitary infanticidal parasitoid Echthrodelphax fairchildii Perkins (Hymenoptera: Dryinidae). We compared the preferences and host values between each of four pairs of double and triple parasitism, each of which had the same time interval between the first and last oviposition bouts. Ovipositions on doubly and singly parasitized hosts occurred with similar frequencies in each of the four pairs, even though the doubly parasitized hosts were of lower value than the singly parasitized hosts. However, the value of doubly parasitized hosts with the first and second parasitoid offspring on the same side of the host was higher than that of hosts with the two offspring on different sides, and the value of the former did not differ significantly from that of singly parasitized hosts. The preferences between singly and doubly parasitized hosts with the two offspring on the same or different sides were as expected from differences in their values, except for one pair of double and triple parasitisms. This exception is considered attributable to an imperfect ability to evaluate hosts.  相似文献   

14.
Genetic connectivity is expected to be lower in species with limited dispersal ability and a high degree of habitat specialization (intrinsic factors). Also, gene flow is predicted to be limited by habitat conditions such as physical barriers and geographic distance (extrinsic factors). We investigated the effects of distance, intervening pools, and rapids on gene flow in a species, the Tuxedo Darter (Etheostoma lemniscatum), a habitat specialist that is presumed to be dispersal‐limited. We predicted that the interplay between these intrinsic and extrinsic factors would limit dispersal and lead to genetic structure even at the small spatial scale of the species range (a 38.6 km river reach). The simple linear distribution of E. lemniscatum allowed for an ideal test of how these factors acted on gene flow and allowed us to test expectations (e.g., isolation‐by‐distance) of linearly distributed species. Using 20 microsatellites from 163 individuals collected from 18 habitat patches, we observed low levels of genetic structure that were related to geographic distance and rapids, though these factors were not barriers to gene flow. Pools separating habitat patches did not contribute to any observed genetic structure. Overall, E. lemniscatum maintains gene flow across its range and is comprised of a single population. Due to the linear distribution of the species, a stepping‐stone model of dispersal best explains the maintenance of gene flow across its small range. In general, our observation of higher‐than‐expected connectivity likely stems from an adaptation to disperse due to temporally unstable and patchy habitat.  相似文献   

15.
Juvenile three-spined sticklebacks avoid parasitized conspecifics   总被引:1,自引:1,他引:0  
Synopsis Juvenile three-spined sticklebacks,Gasterosteus aculeatus, were given a series of four choice tests to determine whether they avoided schools of conspecifics in which individuals were parasitized with the ectoparasiteArgulus canadensis. Results from these tests indicate that juvenile sticklebacks can avoid schools of parasitized conspecifics. Furthermore, parasites alone did not elicit an avoidance response, suggesting that it is both the presence of the parasite and its effect on stickleback behavior that causes avoidance of parasitized individuals.  相似文献   

16.
Parasitic plants often have a strong fitness‐impact on their plant hosts through increased host mortality and reduced or complete suppression of reproduction. Tristerix corymbosus (Loranthaceae) is a hemiparasitic mistletoe that infects a wide range of host species along its distribution range. Among such species, Rhaphithamnus spinosus (Verbenaceae) is a frequent host with a flowering and fruiting season partially synchronized with mistletoe reproductive phenology. As parasitized hosts have, in principle, a larger flower display and fruit crop size than non‐parasitized hosts, we examined whether host and parasite reproductive synchrony make infected hosts more attractive for pollinators and seed dispersers than uninfected hosts. Our results showed that pollinator visit rates did not differ between parasitized and non‐parasitized hosts. Conversely, seed rain was higher in parasitized than non‐parasitized individuals. The number of seeds fallen under non‐parasitized plants was spatially associated with crop size, while parasitized plants did not show such association. Finally, the number of seedlings of R. spinosus was significantly larger near parasitized than non‐parasitized hosts. Our results suggest that the presence of the mistletoe might be responsible of the higher reproductive success showed by the parasitized fraction of R. spinosus. This effect, however, seems to be related to seed dispersal processes rather than pollination effects.  相似文献   

17.
Parrotia subaequalis (Hamamelidaceae) is a Tertiary relic species endemic in eastern China. We used inter‐simple sequence repeat (ISSR) markers to access genetic diversity and population genetic structure in natural five populations of P. subaequalis. The levels of genetic diversity were higher at species level (= 0.2031) but lower at population level (= 0.1096). The higher genetic diversity at species levels might be attributed to the accumulation of distinctive genotypes which adapted to the different habitats after Quaternary glaciations. Meanwhile, founder effects on the early stage, and subsequent bottleneck of population regeneration due to its biological characteristics, environmental features, and human activities, seemed to explain the low population levels of genetic diversity. The hierarchical AMOVA revealed high levels (42.60%) of among‐population genetic differentiation, which was in congruence with the high levels of Nei's genetic differentiation index (GST = 0.4629) and limited gene flow (Nm = 0.5801) among the studied populations. Mantel test showed a significant isolation‐by‐distance, indicating that geographic isolation has a significant effect on genetic structure in this species. Unweighted pair‐group method with arithmetic average clustering, PCoA, and Bayesian analyses uniformly recovered groups that matched the geographical distribution of this species. In particular, our results suggest that Yangtze River has served as a natural barrier to gene flow between populations occurred on both riversides. Concerning the management of P. subaequalis, the high genetic differentiation among populations indicates that preserving all five natural populations in situ and collecting enough individuals from these populations for ex situ conservation are necessary.  相似文献   

18.
The obligate intracellular parasite Toxoplasma gondii exploits cells of the immune system to disseminate. Upon infection, parasitized dendritic cells (DCs) and microglia exhibit a hypermigratory phenotype in vitro that has been associated with enhancing parasite dissemination in vivo in mice. One unresolved question is how parasites commandeer parasitized cells to achieve systemic dissemination by a ‘Trojan‐horse’ mechanism. By chromatography and mass spectrometry analyses, we identified an orthologue of the 14‐3‐3 protein family, T. gondii 14‐3‐3 (Tg14‐3‐3), as mediator of DC hypermotility. We demonstrate that parasite‐derived polypeptide fractions enriched for Tg14‐3‐3 or recombinant Tg14‐3‐3 are sufficient to induce the hypermotile phenotype when introduced by protein transfection into murine DCs, human DCs or microglia. Further, gene transfer of Tg14‐3‐3 by lentiviral transduction induced hypermotility in primary human DCs. In parasites expressing Tg14‐3‐3 in a ligand‐regulatable fashion, overexpression of Tg14‐3‐3 was correlated with induction of hypermotility in parasitized DCs. Localization studies in infected DCs identified Tg14‐3‐3 within the parasitophorous vacuolar space and a rapid recruitment of host cell 14‐3‐3 to the parasitophorous vacuole membrane. The present work identifies a determinant role for Tg14‐3‐3 in the induction of the migratory activation of immune cells by T. gondii. Collectively, the findings reveal Tg14‐3‐3 as a novel target for an intracellular pathogen that acts by hijacking the host cell's migratory properties to disseminate.  相似文献   

19.
During the process of ecological speciation, reproductive isolation results from divergent natural selection and leads to a positive correlation between genetic divergence and adaptive phenotypic divergence, that is, isolation by adaptation (IBA). In natural populations, phenotypic differentiation is often autocorrelated with geographic distance, making IBA difficult to distinguish from the neutral expectation of isolation by distance (IBD). We examined these two alternatives in a dramatic case of clinal phenotypic variation in an Andean songbird, the Line‐cheeked Spinetail (Cranioleuca antisiensis). At its geographic extremes, this species shows a near threefold difference in body mass (11.5 to 31.0 g) with marked plumage differences. We analysed phenotypic, environmental and genetic data (5,154 SNPs) from 172 individuals and 19 populations sampled along its linear distribution in the Andes. We found that body mass was tightly correlated with environmental temperature, consistent with local adaptation as per Bergmann's rule. Using a PSTFST analysis, we found additional support for natural selection driving body mass differentiation, but these results could also be explained by environment‐mediated phenotypic plasticity. When we assessed the relative support for patterns of IBA and IBD using variance partitioning, we found that IBD was the best explanation for genetic differentiation along the cline. Adaptive phenotypic or environmental divergence can reduce gene flow, a pattern interpreted as evidence of ecological speciation's role in diversification. Our results provide a counterexample to this interpretation. Despite conditions conducive to ecological speciation, our results suggest that dramatic size and environmental differentiation within C. antisiensis are not limiting gene flow.  相似文献   

20.
Ocean currents are an important driver of evolution for sea‐dispersed plants, enabling them to maintain reciprocal gene flow via sea‐dispersed diaspores and obtain wide distribution ranges. Although geographic barriers are known to be the primary factors shaping present genetic structure of sea‐dispersed plants, cryptic barriers which form clear genetic structure within oceanic regions are poorly understood. To test the presence of a cryptic barrier, we conducted a phylogeographic study together with past demographic inference for a widespread sea‐dispersed plant, Vigna marina, using 308 individuals collected from the entire Indo‐West Pacific (IWP) region. Chloroplast DNA variation showed strong genetic structure that separated populations into three groups: North Pacific (NP), South Pacific (SP) and Indian Ocean (IN) (FCT among groups = 0.954–1.000). According to the Approximate Bayesian computation inference, splitting time between NP and SP was approximately 20,200 years (95%HPD, 4,530–95,400) before present. Moreover, a signal of recent population expansion was detected in the NP group. This study clearly showed the presence of a cryptic barrier in the West Pacific region of the distributional range of V. marina. The locations of the cryptic barrier observed in V. marina corresponded to the genetic breaks found in other plants, suggesting the presence of a common cryptic barrier for sea‐dispersed plants. Demographic inference suggested that genetic structure related to this cryptic barrier has been present since the last glacial maximum and may reflect patterns of past population expansion from refugia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号