首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
A Y Woody  C R Vader  R W Woody  B E Haley 《Biochemistry》1984,23(13):2843-2848
A photoaffinity analogue of adenosine 5'-triphosphate (ATP), 8-azidoadenosine 5'-triphosphate (8-N3ATP), has been used to elucidate the role of the various subunits involved in forming the active site of Escherichia coli DNA-dependent RNA polymerase. 8-N3ATP was found to be a competitive inhibitor of the enzyme with respect to the incorporation of ATP with Ki = 42 microM, while uridine 5'-triphosphate (UTP) incorporation was not affected. UV irradiation of the reaction mixture containing RNA polymerase and [gamma-32P]-8-N3ATP induced covalent incorporation of radioactive label into the enzyme. Analysis by gel filtration and nitrocellulose filter binding indicated specific binding. Subunit analysis by sodium dodecyl sulfate and sodium tetradecyl sulfate gel electrophoresis and autoradiography of the labeled enzyme showed that the major incorporation of radioactive label was in beta' and sigma, with minor incorporation in beta and alpha. The same pattern was observed in both the presence and absence of poly[d(A-T)] and poly[d(A-T)] plus ApU. Incorporation of radioactive label in all bands was significantly reduced by 100-150 microM ATP, while 100-200 microM UTP did not show a noticeable effect. Our results indicate major involvement of the beta' and sigma subunits in the active site of RNA polymerase. The observation of a small extent of labeling of the beta and alpha subunits, which was prevented by saturating levels of ATP, suggests that these subunits are in close proximity to the catalytic site.  相似文献   

5.
6.
The kinetics of E. coli RNA polymerase.   总被引:3,自引:2,他引:1       下载免费PDF全文
Using an assay specific for chain elongation of E. coli RNA polymerase the kinetics of this propagation reaction have been studied. The kinetic behaviour is consistent woth the mathematical model formulated for this multisubstrate enzyme. The effect of increasing salt concentration on the kinetics of the reaction indicated that DNA unwinding is probably a necessary step in the propagation step, although this may not be the rate limiting step under all conditions.  相似文献   

7.
8.
Binding of E. coli transfer RNA to E. coli RNA polymerase   总被引:1,自引:0,他引:1  
  相似文献   

9.
10.
Heterogeneity of E. coli RNA polymerase   总被引:11,自引:0,他引:11  
  相似文献   

11.
Various base and sugar modified derivatives of ATP and UTP were used as substrate analogs for the steady state initiation reaction ATP+UTP=pppApU and the single step addition reaction ApC+ATP=ApCpA. These reactions were carried out by E. coli RNA polymerase on T7 DNA in the presence of rifampicin. The steady state kinetic parameters of the analogs, either as substrates or inhibitors, were determined. On the basis of the obtained results it is concluded that purine NTP s in initiation require anti-conformation about the glycosidic bonds as well as gauche-gauche conformation of the C(4')-C(5') bonds. The latter conformation is also a prerequisite for substrates in elongation, whereas strict anti-conformation of glycosidic bonds is not.  相似文献   

12.
13.
The interaction of sigma subunit of E. coli RNA polymerase with DNA, either double or single-stranded, and with two inhibitors of RNA synthesis was investigated by using antibodies directed against the subunit. Free sigma subunit was shown to interact with poly(dA), poly(dT), poly(dAC).poly(dGT), T7 DNA and, to a lesser degree, with lambda DNA. When the sigma subunit forms part of the holo enzyme, sigma also interacts with poly(dG).poly(dC). Rifampicin and streptolydigin interact with sigma in the holo enzyme and with free and core bound sigma subunit, respectively. The results suggest that sigma recognizes mainly AC-GT-sequences in double-stranded DNA. The findings are correlated with the base composition in RNA polymerase binding regions of promoters and suggest at least a general interaction between sigma subunit and single-stranded DNA in open complexes.  相似文献   

14.
Inhibition of E. coli RNA polymerase by polyadenylic acid   总被引:1,自引:0,他引:1  
  相似文献   

15.
16.
17.
5-Formyluracil (fU) is one of the thymine lesions produced by reactive oxygen radicals in DNA and its constituents. In this work, 5-formyl-2'-deoxyuridine 5'-triphosphate (fdUTP) was chemically synthesized and extensively purified by HPLC. The electron withdrawing 5-formyl group facilitated ionization of fU. Thus, p K a of the base unit of fdUTP was 8.6, significantly lower than that of parent thymine (p K a = 10.0 as dTMP). fdUTP efficiently replaced dTTP during DNA replication catalyzed by Escherichia coli DNA polymerase I (Klenow fragment), T7 DNA polymerase (3'-5'exonuclease free) and Taq DNA polymerase. fU-specific cleavage of the replication products by piperidine revealed that when incorporated as T, incorporation of fU was virtually uniform, suggesting minor sequence context effects on the incorporation frequency of fdUTP. fdUTP also replaced dCTP, but with much lower efficiency than that for dTTP. The substitution efficiency for dCTP increased with increasing pH from 7.2 to 9.0. The parallel correlation between ionization of the base unit of fdUTP (p K a = 8.6) and the substitution efficiency for dCTP strongly suggests that the base-ionized form of fdUTP is involved in mispairing with template G. These data indicate that fU can be specifically introduced into DNA as unique lesions by in vitro DNA polymerase reactions. In addition, fU is potentially mutagenic since this lesion is much more prone to form mispairing with G than parent thymine.  相似文献   

18.
19.
It is shown that 1-(3'-C-methyl-beta-D-ribofuranosyl)uracil 5'-triphosphate is a terminator of RNA synthesis and may be used for nucleic acid sequencing with DNA-dependent RNA polymerase from E. coli.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号