首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Spatial aspects of neural induction in Xenopus laevis   总被引:3,自引:0,他引:3  
A monoclonal antibody, 2G9, has been identified and characterised as a marker of neural differentiation in Xenopus. The epitope is present throughout the adult central nervous system and in peripheral nerves. Staining is first detected in embryos at stage 21 in the thoracic region. By stage 29 it stains the whole central nervous system, except the tail tip. The epitope is present in a 65K Mr protein, and includes sialic acid. The antibody also reacts with neural tissue in mice and axolotls and newts. 2G9 was used to show that both notochord and somites are capable of neural induction, and the stimulus is present as late as stage 22. Attempts to demonstrate the induction of nervous system by developing nervous system (homoiogenetic induction) were unsuccessful. The view that the lateral extent of the nervous system might be determined by that of the inductive stimulus is discussed. Neural induction was detected as early as stage 10 and occurs in embryos without gastrulation and without cell division from stage 7 1/2.  相似文献   

2.
In Xenopus, experiments performed with isolated ectoderm suggest that neural determination is a 'by default' mechanism, which occurs when bone morphogenetic proteins (BMPs) are antagonized by extracellular antagonists, BMP being responsible for the determination of epidermis. However, Ca(2+) imaging of intact Xenopus embryos reveals patterns of Ca(2+) transients which are generated via the activation of dihydropyridine-sensitive Ca(2+) channels in the dorsal ectoderm but not in the ventral ectoderm. These increases in the concentration of intracellular Ca(2+)([Ca(2+)]i) appear to be necessary and sufficient to orient the ectodermal cells towards a neural fate as increasing the [Ca(2+)]i artificially results in neuralization of the ectoderm. We constructed a subtractive cDNA library between untreated and caffeine-treated ectoderms (to increase [Ca(2+)]i) and then identified early Ca(2+)-sensitive target genes expressed in the neural territories. One of these genes, an arginine methyltransferase, controls the expression of the early proneural gene, Zic3. Here, we discuss the evidence for the existence of an alternative model to the 'by default' mechanism, where Ca(2+) plays a central regulatory role in the expression of Zic3, an early proneural gene, and in epidermal determination which only occurs when the Ca(2+)-dependent signalling pathways are inactive.  相似文献   

3.
4.
The neural crest is an evolutionary adaptation, with roots in the formation of mesoderm. Modification of neural crest behavior has been critical for the evolutionary diversification of the vertebrates and defects in neural crest underlie a range of human birth defects. There has been a tremendous increase in our knowledge of the molecular, cellular and inductive interactions that converge on defining the neural crest and determining its behavior. While there is a temptation to look for simple models to explain neural crest behavior, the reality is that the system is complex in its circuitry. In this review, our goal is to identify the broad features of neural crest origins (developmentally) and migration (cellularly) using data from the zebrafish (teleost) and Xenopus laevis (tetrapod amphibian) in order to illuminate where general mechanisms appear to be in play and, equally importantly, where disparities in experimental results suggest areas of profitable study.Key words: evolution, neural crest, mesoderm, induction, migration  相似文献   

5.
The neural crest is an evolutionary adaptation, with roots in the formation of mesoderm. Modification of neural crest behavior has been is critical for the evolutionary diversification of the vertebrates and defects in neural crest underlie a range of human birth defects. There has been a tremendous increase in our knowledge of the molecular, cellular, and inductive interactions that converge on defining the neural crest and determining its behavior. While there is a temptation to look for simple models to explain neural crest behavior, the reality is that the system is complex in its circuitry. In this review, our goal is to identify the broad features of neural crest origins (developmentally) and migration (cellularly) using data from the zebrafish (teleost) and Xenopus laevis (tetrapod amphibian) in order to illuminate where general mechanisms appear to be in play, and equally importantly, where disparities in experimental results suggest areas of profitable study.  相似文献   

6.
Neural induction is known to involve an interaction of ectoderm with dorsal mesoderm during gastrulation, but several kinds of studies have argued that competent ectoderm can also be neutralized via an interaction with previously neuralized tissue, a process termed homeogenetic neural induction. Although homeogenetic neural induction has been proposed to play an important role in the normal induction of neural tissue, this process has not been subjected to detailed study using tissue recombinants and molecular markers. We have examined the question of homeogenetic neural induction in Xenopus embryos, both in transplant and recombinant experiments, using the expression of two neural antigens to assay the response. When ectoderm that is competent to be neuralized is transplanted to the region adjacent to the neural plate of early neurula embryos, it forms neural tissue, as assayed by staining with antibodies against the neural cell adhesion molecule, N-CAM. Transplants to the ventral region, far from the neural plate, do not express N-CAM, indicating that neuralization is not occurring as a result of the transplantation procedure itself. Because this response might be occurring as a result of interactions of ectoderm with either adjacent neural plate tissue, or with underlying dorsolateral mesoderm, recombinant experiments were performed to determine the source of the neuralizing signal. Ectoderm cultured in combination with neural plate tissue alone expresses neural markers, while ectoderm cultured in combination with dorsolateral mesoderm does not. We conclude that neural tissue can homeogenetically induce competent ectoderm to form neural tissue and argue that this induction occurs via planar signaling within the ectoderm, a mechanism that, in normal development, may be involved in interactions within presumptive neural ectoderm or in specifying structures that lie near the neural plate.  相似文献   

7.
Clonal analysis of mesoderm induction in Xenopus laevis   总被引:2,自引:0,他引:2  
Acidic fibroblast growth factor (aFGF) has been used to induce mesoderm from single animal pole cells of midblastula stage Xenopus embryos. The cells are individually cultured in a completely defined medium and are able to differentiate as small clones in a high proportion of cases. FGF-treated cells can give rise to several mesodermal cell types, while untreated cells show only epidermal or neural differentiation. Mesodermal differentiation can occur in clones of as few as eight cells, indicating that any additional cell-cell interactions required for mesodermal differentiation can be met by the medium used.  相似文献   

8.
Suramin, a polyanionic compound, which has previously shown to dissociate platelet derived growth factor (PDGF) from its receptor, prevents the differentiation of neural (brain) structures of recombinants of dorsal blastopore lip (Spemann's organizer) and competent neuroectoderm. Furthermore, the suramin treatment changes the prospective differentiation pattern of isolated blastopore lip. While untreated dorsal blastopore lip will differentiate into dorsal mesodermal structures (notochord and somites), suramin treated dorsal blastopore lip will form ventral mesoderm structures, especially heart structures. The results are discussed in the context of the current opinion about the mode of action of different growth factor superfamilies.  相似文献   

9.
Several in vitro systems exist for the induction of animal caps using growth factors such as activin. In this paper, we compared the competence of activin-treated animal cap cells dissected from the late blastulae of Xenopus tropicalis and Xenopus laevis. The resultant tissue explants from both species differentiated into mesodermal and endodermal tissues in a dose-dependent manner. In addition, RT-PCR analysis revealed that organizer and mesoderm markers were expressed in a similar temporal and dose-dependent manner in tissues from both organisms. These results indicate that animal cap cells from Xenopus tropicalis have the same competence in response to activin as those from Xenopus laevis.  相似文献   

10.
11.
12.
13.
Xenopus laevis embryos were dissected into dorsal and ventral regions in post-gastrula stages. Polyadenylated and nonpolyadenylated ribonucleic acids were separated on oligo (dT) cellulose and translated in vitro. The radioactivity incorporated into the translation products directed by polyadenylated and nonpolyadenylated messenger ribonucleic acids shows that in the dorsal region most proteins are synthesized on polyadenylated messenger ribonucleic acid templates in all the stages, while in the ventral region the major templates seem to be, until the neural fold stage, nonpolyadenylated messenger ribonucleic acids. Later the polyadenylated messenger ribonucleic acid activity there too increases.  相似文献   

14.
The results of this study indicate that the induction of the central nervous system in Xenopus laevis depends on the close juxtaposition of inducing chordamesoderm and reacting ectoderm, which is necessary for the short distance migration of neural inducing factors. The examination of the neuroectoderm-chordamesoderm interface at intervals of 1 h up to 5 h showed that the onset of neural induction is correlated to the degree of contact formation between ectodermal and mesodermal cells. In the ectoderm cells the number of coated pits, a feature of receptor-mediated endocytosis, is increased. Furthermore there exist telophase bridges between some ectoderm cells, which are possibly correlated to secondary cell interactions.  相似文献   

15.
Homologues of the murine Brachyury gene have been shown to be involved in mesoderm formation in several vertebrate species. In frogs, the Xenopus Brachyury homologue, Xbra, is required for normal formation of posterior mesoderm. We report the characterisation of a second Brachyury homologue from Xenopus, Xbra3, which has levels of identity with mouse Brachyury similar to those of Xbra. Xbra3 encodes a nuclear protein expressed in mesoderm in a temporal and spatial manner distinct from that observed for Xbra. Xbra3 expression is induced by mesoderm-inducing factors and overexpression of Xbra3 can induce mesoderm formation in animal caps. In contrast to Xbra, Xbra3 is also able to cause the formation of neural tissue in animal caps. Xbra3 overexpression induces both geminin and Xngnr-1, suggesting that Xbra3 can play a role in the earliest stages of neural induction. Xbra3 induces posterior nervous tissue by an FGF-dependent pathway; a complete switch to anterior neural tissue can be effected by the inhibition of FGF signalling. Neither noggin, chordin, follistatin, nor Xnr3 is induced by Xbra3 to an extent different from their induction by Xbra nor is BMP4 expression differentially affected.  相似文献   

16.
Differential growth of the neural retina in Xenopus laevis larvae   总被引:3,自引:0,他引:3  
  相似文献   

17.
Protamines from individual frogs of the subspecies Xenopus laevis laevis were compared by electrophoresis on polyacrylamide gels containing acetic acid, urea, and Triton X-100 to determine if the expression of protamine genes differs among individuals. Two electrophoretic bands, SP2a and SP2b, appeared to be expressed as allelic variants. Of 33 frogs, 19 expressed only SP2a, 11 expressed both SP2a and SP2b, and three expressed only SP2b. Electrophoretic analysis of partial V8 protease digests could not distinguish the peptides released from SP2a and SP2b. Differences in sperm development between individuals were not detected by light or electron microscopy. The results suggest that protamine polymorphism can exist among individuals of a species without an apparent effect on sperm development or sperm function.  相似文献   

18.
Separation of neural induction and neurulation in Xenopus   总被引:3,自引:0,他引:3  
  相似文献   

19.
Clonal cultures were performed with the use of neural crest cells and their derivatives, chromatophores, from Xenopus laevis in order to elucidate the state of commitment in early embryogenesis. Neural crest cells that outgrew from neural tube explants were isolated and plated at clonal density. Cloned neural crest cells differentiated and gave rise to colonies that consisted of 1) only melanophores, 2) only xanthophores, or 3) melanophores and xanthophores. Xanthophores and iridophores, which differentiated in vitro, were also isolated and cloned. Cloned xanthophores proliferated in a stable fashion and did not lose their properties. On the other hand, cloned iridophores converted into melanophores as they proliferated. These results suggest that there is heterogeneity in the state of commitment of neural crest cells immediately after migration with regard to chromatophore differentiation and that iridophore determination is relatively labile (at least in vitro), whereas melanophore and xanthophore phenotypes are stable.  相似文献   

20.
slug gene expression is associated with the specification and migration of neural crest cells in the African clawed frog Xenopus laevis. We provide evidence that the protein Ying-Yang 1 (YY1) regulates the slug gene expression both indirectly and directly, via a YY1 cis-element in the slug promoter, during Xenopus development. The ability of the YY1 to bind this YY1 cis-element was confirmed by electromobility shift assays and reporter assays. YY1 was detected in the nuclei of ectodermal cells contemporaneously with the process of neural crest specification. The injection of anti-YY1 morpholino, which targeted both YY1alpha and YY1beta gene products, depleted YY1 expression below 20% and was lethal at gastrulation. Sublethal depletion of YY1 reduced the length of the anterior-posterior axis and severely inhibited the expression of the neural marker Nrp1 and of the slug gene. Overexpression of YY1 or mutation of the YY1 cis-element reduced the restricted spatial expression of the slug reporter gene in the neural ectoderm border and provoked its expression in the nonneural ectoderm. Chromatin immunoprecipitation indicated that endogenous YY1 interacts directly with the YY1 cis-element of the endogenous slug gene and with the slug gene reporter sequence injected into embryos. The results suggest that YY1 is essential for Xenopus development; is necessary for neural ectoderm differentiation, a prerequisite for neural crest specification; and restricts which cells can form neural crest mesenchyme through directly blocking slug gene activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号