首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Restoration is gaining importance in the management of plant invasions. As the success of restoration projects is frequently determined by factors other than ecological ones, we explored the ecological and financial feasibility of active restoration on three different invaded sites in South Africa's Cape Floristic Region. The aim of our study was to identify cost-effective ways of restoring functional native ecosystems following invasion by alien plants. Over three years we evaluated different restoration approaches using field trials and experimental manipulations (i.e. mechanical clearing, burning, different soil restoration techniques and sowing of native species) to reduce elevated soil nutrient levels and to re-establish native fynbos communities. Furthermore we investigated the possibility of introducing native fynbos species that can be used for sustainable harvesting to create an incentive for restoration on private land.Diversity and evenness of native plant species increased significantly after restoration at all three sites, whereas cover of alien plants decreased significantly, confirming that active restoration was successful. However, sowing of native fynbos species had no significant effect on native cover, species richness, diversity or evenness in the Acacia thicket and Kikuyu field, implying that the ecosystem was sufficiently resilient to allow autogenic recovery following clearing and burning of the invasive species. Soil restoration treatments resulted in an increase of available nitrogen in the Acacia thicket, but had no significant effects in the Eucalyptus plantation. However, despite elevated available soil nitrogen levels, native species germinated irrespective whether sown or unsown (i.e. regeneration from the soil seed bank).Without active introduction of native species, native grasses, forbs and other shrubs would have dominated, and proteoids and ericoids (the major fynbos growth forms) would have been under-represented.The financial analysis shows that income from flower harvesting following active restoration consistently outweighs income following passive restoration, but that the associated increase in income does not always justify the higher costs. We conclude that active restoration can be effective and financially feasible when compared to passive restoration, depending on the density of invasion. Active restoration of densely invaded sites may therefore only be justifiable if the target area is in a region of high conservation priority.  相似文献   

2.
Restoration of coastal plain depressions, a biologically significant and threatened wetland type of the southeastern United States, has received little systematic research. Within the context of an experimental project designed to evaluate several restoration approaches, we tested whether successful revegetation can be achieved by passive methods (recruitment from seed banks or seed dispersal) that allow for wetland "self-design" in response to hydrologic recovery. For 16 forested depressions that historically had been drained and altered, drainage ditches were plugged to reestablish natural ponding regimes, and the successional forest was harvested to open the sites and promote establishment of emergent wetland vegetation. We sampled seed bank and vegetation composition 1 year before restoration and monitored vegetation response for 3 years after. Following forest removal and ditch plugging, the restored wetlands quickly developed a dense cover of herbaceous plant species, of which roughly half were wetland species. Seed banks were a major source of wetland species for early revegetation. However, hydrologic recovery was slowed by a prolonged drought, which allowed nonwetland plant species to establish from seed banks and dispersal or to regrow after site harvest. Some nonwetland species were later suppressed by ponded conditions in the third year, but resprouting woody plants persisted and could alter the future trajectory of revegetation. Some characteristic wetland species were largely absent in the restored sites, indicating that passive methods may not fully replicate the composition of reference systems. Passive revegetation was partially successful, but regional droughts present inherent challenges to restoring depressional wetlands whose hydrologic regimes are strongly controlled by rainfall variability.  相似文献   

3.
The restoration of degraded wetland ecosystems and the recovery of wetland biodiversity are important global issues. Generally, wetland restoration projects include activities to recover vegetation. A promising revegetation technique is one in which soil seed banks are utilized as the source of plant recolonization. Using such a technique, a pilot project to restore lakeshore vegetation was launched at Lake Kasumigaura, Japan, in 2002. In the project, lake sediments containing the seed banks were spread thinly (∼10 cm) on the surfaces of artificial lakeshores, which were constructed in front of concrete levees and had microtopographic variations. In total, 180 species, including six endangered or vulnerable species and 12 native submerged plants that had disappeared from the above-ground vegetation of the lake, were recorded in five recreated lakeshores (total area, 65,200 m2) during the first year of the restoration. The distribution of each restored species at the sites suggested the importance of microtopographic relief for recolonizing species-rich lakeshore vegetation. Furthermore, the origin of the source seed banks affected the species composition of the restored vegetation. On the other hand, the restoration sites were subject to exotic plant invasions. Here, we report lessons learned from the Lake Kasumigaura restoration project as a contribution to the establishment of ecologically sound revegetation techniques.  相似文献   

4.
In order to compare the petroleum tolerance and phytoremediation ability of a native grass, Agropyron desertorum (desert Wheatgrass) with Cynodon spp. (Bermuda grass) in a petroleum hydrocarbon-contaminated soil, a 7-month greenhouse experiment was performed. There were 4 soil treatments with 0% (uncontaminated soil), 2%, 4%, and 12% (woil/wsoil) petroleum concentration. Parameters including shoot and root fresh weight and dry weight, root penetration depth and root density depth, soil respiration, and total petroleum hydrocarbons (TPH) degradation were measured during and after experiments. The results showed an increase in shoot fresh weight of A. desertorum in soil polluted with 2% petroleum sludge compared to the uncontaminated soil, whereas the growth of Bermuda grass significantly decreased in corresponding treatment. Root growth of A. desertorum was decreased in 2% and 4% petroleum sludge, whereas it was increased in Bermuda grass species. Overall, root fresh weight of Bermuda grass was higher than that of A. desertorum in all treatments. Significant increase in microorganisms' activity was observed in the presence of petroleum sludge and plants in soil compared with uncontaminated soil without plants, and the highest soil respiration (37.6 mg C-CO2/kg soil day) has been observed in the rhizosphere of Bermuda grass in treatment with 12% petroleum sludge. Plants had a significant role in the degradation of soil contaminants as TPH degradation in planted soils was significantly higher than that in unplanted soil (TPH degradation (%) was 30.4 and 38.9 in A. desertorum and Bermuda grass, respectively, whereas it was just 13.3 in unplanted soil). The rhizosphere of Bermuda grass had significantly less residual TPHs compared to A. desertorum. The results indicated that both Cynodon spp. and A. desertorum had a peculiar tolerance to petroleum pollution. Therefore, as Bermuda grass has already been suggested to be a typical and efficient species for phytoremediating petroleum-contaminated sites, A. desertorum may also prove to be a suitable native alternative.  相似文献   

5.
Questions: What factors limit vegetation restoration of secondary bare saline‐alkaline patches (BSAP) in the Songnen grassland of northeast China? Is there any adaptive approach to promote revegetation in the shortest time possible and at a low cost? Location: Northeast China. Methods: Considering the climate, soil saline‐alkalization and available seed sources, a new approach was adopted to restore vegetation in BSAP, which were formed by the degradation of typical Leymus chinensis grasslands owing to long‐term overgrazing. The experimental treatments included no treatment (CK), fencing (F), fencing+inserting cornstalks (FS), fencing+inserting cornstalks+sowing L. chinensis (FSL) and fencing+inserting cornstalks+sowing Puccinellia chinampoensis (FSP). The assumptions behind inserting cornstalks were not only that they would create safe sites for initial revegetation but also that they would enhance seed input by trapping and containing the seeds from seed movement on the BSAP surface. Results: Seed bank shortage was an important factor limiting initial revegetation in BSAP; seed movement on the BSAP surface could provide the necessary seed source if it were contained by effective measures. Vegetation at the sites FS, FSL and FSP was restored well in terms of the above‐ground biomass and coverage. Inserted cornstalks acted as safe sites that enhanced the plant survival rate in BSAP; they also enhanced the ability to contain seed movement, thus providing a seed source for initial revegetation. Along with initial revegetation, tussocks around cornstalks can provide better safe sites, which in turn can accelerate subsequent vegetation restoration in BSAP. Conclusions: The approach entails the strategic use of diverse seed sources and the construction of safe sites with agricultural byproducts (cornstalks); therefore, it is a low‐cost method and can be used on a widespread scale. The results provide vigorous support in favor of vegetation restoration in BSAP and severely degraded grasslands in the region. In practice, this approach can be used in degraded ecosystems with compacted soil surfaces (including arid and salt‐affected soils) to promote revegetation in various regions.  相似文献   

6.
Invasion by the non‐native tree Tamarix has led to implementation of restoration projects aimed at maintaining the ecological integrity of many riparian communities in the southwestern United States. These restoration efforts may include Tamarix removal, manipulation of hydrologic regimes, and active revegetation of native species. The goal of this study was to determine which site characteristics are correlated with restoration success, defined in terms of reductions of undesirable species such as Tamarix and establishment of desirable, native species. To accomplish this, vegetative and environmental data were collected at 28 sites in the southwestern United States where active revegetation was completed after Tamarix removal. These data were incorporated into regression tree models with predictor variables that included number of years since removal (1–18 years) and multiple management, climate, soils, and hydrological variables to determine success of Tamarix control, revegetation success, and general plant community responses. Our results suggest that there are easily measurable site characteristics that are associated with greater native cover and richness, planting success, and Tamarix control. Close proximity to perennial water, sufficient precipitation, recent flooding, and good drainage as well as coarser soil texture, and lower soil pH all favored native species. Overall, those site characteristics associated with native species success were the same as those related to lower Tamarix cover. These quantitative models are intended to assist researchers and land managers to design more effective riparian restoration efforts in this critical arid lands ecosystem.  相似文献   

7.
Over 90% of terraced fields have been abandoned on the island of Lanzarote in the last 40 years. The present work analyses the effects of abandonment on the soil and vegetation recovery of terraced field agroecosystems by comparing them with adjacent non-terraced fields in Lanzarote, Canary Islands (Spain). This information is necessary to take the appropriate management actions to achieve goals such as soil protection and biodiversity conservation. Results indicate that terraced fields display better soil quality than non-terraced ones, as shown by the significant differences found in parameters such as SAR, exchangeable Na, CaCO3, B content, moisture content or soil depth. Moreover, the terraced fields' plant community has more species similarities with the native plant community when compared with non-terraced areas. Owing to characteristics such as deeper soils, more water capacity, lower salinity and less sodic soils, terraced soils provide better conditions for passive restoration of both soil and vegetation. Therefore, the recovery and maintenance of wall structures and revegetation with native/endemic species are proposed to promote the restoration of native systems and preserve a landscape with cultural and aesthetic value.  相似文献   

8.
The primary goal of restoration is to create self‐sustaining ecological communities that are resilient to periodic disturbance. Currently, little is known about how restored communities respond to disturbance events such as fire and how this response compares to remnant vegetation. Following the 2003 fires in south‐eastern Australia we examined the post‐fire response of revegetation plantings and compared this to remnant vegetation. Ten burnt and 10 unburnt (control) sites were assessed for each of three types of vegetation (direct seeding revegetation, revegetation using nursery seedlings (tubestock) and remnant woodland). Sixty sampling sites were surveyed 6 months after fire to quantify the initial survival of mid‐ and overstorey plant species in each type of vegetation. Three and 5 years after fire all sites were resurveyed to assess vegetation structure, species diversity and vigour, as well as indicators of soil function. Overall, revegetation showed high (>60%) post‐fire survival, but this varied among species depending on regeneration strategy (obligate seeder or resprouter). The native ground cover, mid‐ and overstorey in both types of plantings showed rapid recovery of vegetation structure and cover within 3 years of fire. This recovery was similar to the burnt remnant woodlands. Non‐native (exotic) ground cover initially increased after fire, but was no different in burnt and unburnt sites 5 years after fire. Fire had no effect on species richness, but burnt direct seeding sites had reduced species diversity (Simpson's Diversity Index) while diversity was higher in burnt remnant woodlands. Indices of soil function in all types of vegetation had recovered to levels found in unburnt sites 5 years after fire. These results indicate that even young revegetation (stands <10 years old) showed substantial recovery from disturbance by fire. This suggests that revegetation can provide an important basis for restoring woodland communities in the fire‐prone Australian environment.  相似文献   

9.
The ever increasing demand for native plants and seed for use in restoration and revegetation has created a sizable industry. The large‐scale production and planting of native plants have given rise to a suite of ecological concerns including collection impacts, genetic diversity, and provenance. This study examines the practices and beliefs of 12 restoration plant production companies in Colorado with regard to arising ecological issues and identifies where further research is needed. We found that native seed collection in Colorado was largely unregulated and unmonitored and impacts were unknown. Maintaining genetic diversity in restoration materials is costly and does not have universal support. The use of provenance material (or local ecotypes) was hotly contested with strong and sound arguments on both sides of the issue. Procurement of pure ecotypes was difficult because of the variety of institutions involved in production and complications such as artificial selection and cross‐pollination.  相似文献   

10.
The preponderance of short‐term objectives and lack of systematic monitoring of restoration projects limits opportunities to learn from past experience and improve future restoration efforts. We conducted a retrospective, cross‐sectional survey of 89 riparian revegetation sites and 13 nonrestored sites. We evaluated 36 restoration metrics at each site and used project age (0–39 years) to quantify plant community and aquatic habitat trajectories with a maximum likelihood model selection approach to compare linear and polynomial relationships. We found significant correlations with project age for 16 of 21 riparian vegetation, and 11 of 15 aquatic habitat attributes. Our results indicated improvements in multiple ecosystem services and watershed functions such as diversity, sedimentation, carbon sequestration, and available habitat. Ten riparian vegetation metrics, including native tree and exotic shrub density, increased nonlinearly with project age, while litter and native shrub density increased linearly. Species richness and cover of annual plants declined over time. Improvements in aquatic habitat metrics, such as increasing pool depth and decreasing bankfull width‐to‐depth ratio, indicated potentially improved anadromous fish habitats at restored sites. We hypothesize that certain instream metrics did not improve because of spatial and/or temporal limitations of riparian vegetation to affect aquatic habitat. Restoration managers should be prepared to maintain or enhance understory diversity by controlling exotic shrubs or planting shade‐tolerant native species as much as 10 years after revegetation.  相似文献   

11.
The restoration of disturbed ecosystems is challenging and often unsuccessful, particularly when non‐native plants are abundant. Ecosystem restoration may be hindered by the effects of non‐native plants on soil biogeochemical characteristics and microbial communities that persist even after plants are removed. To examine the importance of soil legacy effects, we used experimental restorations of Florida shrubland habitat that had been degraded by the introduction of non‐native grasses coupled with either mechanical disturbance or pasture conversion. We removed non‐native grasses and inoculated soils with native microbial communities at each degraded site, then examined how habitat structure, soil nitrogen, soil microbial abundances, and native seed germination responded over two years compared to undisturbed native sites. Grass removal treatments effectively restored some aspects of native habitat structure, including decreased exotic grass cover, increased bare ground, and reduced litter cover. Soil fungal abundance was also somewhat restored by grass removals, but soil algal abundance was unaffected. In addition, grass removal and microbial inoculation improved seed germination rates in degraded sites, but these remained quite low compared to native sites. High soil nitrogen persisted throughout the experiment regardless of treatment. Many treatment effects were site‐specific, however, with legacies in the more degraded vegetation type tending to be more difficult to overcome. These results support the need for context‐dependent restoration approaches and suggest that the degree of soil legacy effects may be a good indicator of restoration potential.  相似文献   

12.
石油污染土壤堆制微生物降解研究   总被引:11,自引:0,他引:11  
采用异位生物修复技术堆式堆制处理方法 ,对辽河油田原油污染土壤进行了生物修复处理研究 .处理工程设 4个处理料堆单元 ,每个处理单元长 118.5cm ,宽 6 5 .5cm ,高 12 .5cm .研究结果表明 ,当进行处理的石油污染土壤中石油烃总量为 5 .2 2 g·10 0 g-1土时 ,利用黄孢原毛平革菌 (Phanerochaetechrysospori um) ,经过 5 5d的运行 ,石油烃总量去除率达 5 4.2 % .堆制处理中影响污染土壤石油烃总量生物降解的主要变化因子为污染土壤的O2 和CO2 含量、降解石油烃微生物的数量、污染土壤pH的变化 .通过监测这些数据的变化 ,可直接反映该工程的处理石油污染土壤的效果 .本处理工程采用定期通风措施 ,操作简单、运行费用低廉 ,为石油污染土壤生物修复实用化提供了一种简单易行的污染土壤清洁技术 .  相似文献   

13.
Phyto-stimulation, the use of plants to stimulate activity of microorganisms in a root zone, has been proposed as an approach to promote the degradation of petroleum hydrocarbons and thus the remediation of petroleum-polluted soils. In this study, we investigated the potential use of sewage sludge to enhance phyto-stimulating effects of maize (Zea mays L.) on the elimination of an aged petroleum contamination in a calcareous soil. In a pot experiment, maize was grown on the experimental soil for two months at three levels of sewage sludge application (0, 20, and 50 g dry matter of sludge per kg soil). The amendments increased root and shoot growth of the experimental plants approximately by a factor of two at the lower sludge treatment level and by a factor of five at the higher sludge treatment level. In a separate incubation experiment, sludge application also led to an immediate stimulation of soil respiration, which then further increased over time. The initial stimulation was three times larger at the higher than at the lower treatment level, but the rate of subsequent increase was similar in both treatments. The two sludge treatments also accelerated TPH elimination in the contaminated soil, and again the effect was approximately three times stronger at the higher than at the lower treatment level. The sludge effect on TPH elimination was much stronger than the effect of the plants. More than half of the initial contamination was reduced in combined treatment with maize and sludge application at the highest rate. The results show that sewage sludge can substantially enhance the remediation of petroleum-contaminated soil, especially when applied in conjunction with a suitable plant such as maize.  相似文献   

14.
采石场废弃地的生态重建研究进展   总被引:11,自引:0,他引:11  
杨振意  薛立  许建新 《生态学报》2012,32(16):5264-5274
采石场的开采严重破坏了植被和土壤,形成了大量的裸露岩石斜坡,造成宏观景观支离破碎和极端的环境条件,限制了植物的生长。由于自然恢复所需时间长久,人工恢复被广泛应用于采石场废弃地的生态重建。自然演替过程是采石场生态重建的理论基础,自然演替理论可以为人工恢复措施提供指导。植物群落演替的早期阶段,非生物因素起主要作用,随着演替的推移,生物因素的重要性增强。邻近自然植被的土壤和繁殖体通过外力的扩散,对恢复起重要作用。除了非生物和其他的限制,先到达恢复地的物种竞争能力的变化能决定了演替过程。演替过程中的干扰因素往往成为演替重要的驱动力。裸露岩石斜坡的物理稳定性对植被恢复有重要影响,有机废物的使用和施肥可以影响恢复演替的方向和生物多样性。播种一定的植物能够改变恢复演替方向,加速演替过程。乡土物种适应了当地气候,能够促进演替。随着修复时间的延长,土壤有机质含量,植被覆盖度和物种丰富度不断增加,土壤微生物生物量随之增加。开展不同地区采石场植物种类的选育、研究乡土物种的功能特性、土壤微生物群落和酶的变化、植被演替过程的定位研究、植物种间的竞争关系、自然演替和人工恢复的比较研究、探索经济高效的采石场生态重建方法是未来的研究方向。  相似文献   

15.
A full-scale study evaluating an inoculum addition to stimulate in situ bioremediation of oily-sludge-contaminated soil was conducted at an oil refinery where the indigenous population of hydrocarbon-degrading bacteria in the soil was very low (10(3) to 10(4) CFU/g of soil). A feasibility study was conducted prior to the full-scale bioremediation study. In this feasibility study, out of six treatments, the application of a bacterial consortium and nutrients resulted in maximum biodegradation of total petroleum hydrocarbon (TPH) in 120 days. Therefore, this treatment was selected for the full-scale study. In the full-scale study, plots A and B were treated with a bacterial consortium and nutrients, which resulted in 92.0 and 89.7% removal of TPH, respectively, in 1 year, compared to 14.0% removal of TPH in the control plot C. In plot A, the alkane fraction of TPH was reduced by 94.2%, the aromatic fraction of TPH was reduced by 91.9%, and NSO (nitrogen-, sulfur-, and oxygen-containing compound) and asphaltene fractions of TPH were reduced by 85.2% in 1 year. Similarly, in plot B the degradation of alkane, aromatic, and NSO plus asphaltene fractions of TPH was 95.1, 94.8, and 63.5%, respectively, in 345 days. However, in plot C, removal of alkane (17.3%), aromatic (12.9%), and NSO plus asphaltene (5.8%) fractions was much less. The population of introduced Acinetobacter baumannii strains in plots A and B was stable even after 1 year. Physical and chemical properties of the soil at the bioremediation site improved significantly in 1 year.  相似文献   

16.
Guidelines for revegetation in agricultural landscapes may not address restoration of ecosystem functions because management is focused on the replanting stage, although certain functions are delivered by organisms that colonize revegetation months or years later. We investigated the ecosystem function of water infiltration to tree root zones and channels, delivered by invertebrates that form soil macropores. We measured macropore density and infiltration rates at revegetation sites established on retired grazing land, in relation to site age, tree species composition, and geographical location, compared with adjacent matched pastures. Revegetated sites had significantly more macropores than pastures, and revegetation sites aged 11–20 years had more macropores than sites aged 3–5 and 6–10 years. Tree species had a marginal effect, with more macropores in sites with Acacia spp. and Eucalyptus spp. than those with Eucalyptus spp. only. Besides ants, the main groups of soil burrowers were mygalomorph and lycosid spiders and also ground‐nesting native bees. Infiltration rates in revegetation sites aged 11–20 years were double those of pastures and of 3–5 and 6–10 year sites. This is the first study to quantify the rate of recovery of an invertebrate‐driven soil hydrological ecosystem function following revegetation.  相似文献   

17.
Canopy‐forming algae play a key role in temperate coastal ecosystems sustaining complex habitats that provide food and refuge for rich associated biotic communities. These macroalgae are in decline in many coastal areas, where overgrazing by herbivores can lead to the loss of these highly structured and diverse habitats toward less complex sea urchin barren grounds. Once established, low productive barren grounds are considered stable states maintained by several positive feedback mechanisms that prevent the recovery of marine forests. To revert this global decline, restoration efforts and measures are being encouraged by EU regulations and local actions. Here, we tested the success of active revegetation techniques as a tool to promote functional and productive Treptacantha elegans forests in sea urchin barren grounds under different restoration strategies (active, and combined active with passive strategies). Active revegetation was performed in 6 barren grounds, 3 located inside a Mediterranean No‐Take marine reserve (active and passive strategy) and 3 outside (active strategy alone), following a three‐step protocol: (1) sea urchin population eradication, (2) seeding with Treptacantha elegans, and (3) enhancement of T. elegans recruitment. Revegetation success was assessed 1 year later in the six barren grounds, but was only achieved after combining active with passive restoration strategies. Our results encourage revegetation of barren grounds to shift from less productive habitats to complex T. elegans forests, highlight the potential of the combined passive and active restoration strategies, as well as the important role of marine reserves not only in conservation but also in ecological restoration.  相似文献   

18.
This study evaluated the effects of native plants (Sorghum halepense and Aeluropus littoralis), total petroleum hydrocarbons (TPH) concentrations, and nutrients on the removal of TPHs from a highly saline clay soil. For a period of 180 days, rhizosphere microbial number, plant biomass, and residual TPHs were determined monthly. Results showed that TPH removal from soil in the rhizosphere was 13% higher than that in the control (unplanted soil). In addition, the number of heterotrophic bacteria in the rhizosphere and non-rhizosphere soil was 7.407 and 6.629 log10CFU/g, respectively. The maximum TPH removal, microbial numbers, and plant biomass were measured in the treated soil, polluted with 0.86% (w/w) of TPH. The high clay and salinity of the experimental soil had a negative effect on the phytoremediation efficiency. Hence, it was necessary to improve the physicochemical properties of the soil to provide a good condition for plants and microbes, thereby increasing the phytoremediation efficiency.  相似文献   

19.
In 1992, a study was begun to compare the effect of landfarming vs. natural attenuation on the restoration of soil that had been contaminated with crude oil. Each of three lysimeters was filled with a sandy loam topsoil, and crude oil was applied to two of the lysimeters. One of the contaminated lysimeters was tilled, watered, and received a one-time application of fertilizer (N, P, K). No amendments were added to the second contaminated lysimeter, and the third was left uncontaminated. The lysimeters were monitored for 6 months and then left unattended. In 1995 and again in 1997 we sampled these lysimeters to evaluate the long-term effects of contamination and bioremediation. In 1995 we found marked effects on soil chemistry, bacterial, fungal, nematode, and plant populations and a higher rate of bioremediation in the fertilized-contaminated lysimeter (Lawlor et al., 1997). Data from 1997 and previously unreported data from 1995 are the subject of the current report. In 1997, low densities of hydrocarbon-degrading bacteria were found in all the lysimeters and little loss of TPH from the two contaminated lysimeters, suggesting a decreased rate of bioremediation. Nevertheless, there were increases in diversity and number of functional groups of bacteria, nematodes, and native plant species. However, molecular analyses revealed marked differences remained in the composition of dominant eubacterial species, and tests of soybeans indicated field conditions remained unsuitable for these plants.  相似文献   

20.
The use of pyrolyzed carbon, biochar, as a soil amendment is of potential interest for improving phytoremediation of soil that has been contaminated by petroleum hydrocarbons. To examine this question, the research reported here compared the effects of biochar, plants (mesquite tree seedlings), compost and combinations of these treatments on the rate of biodegradation of oil in a contaminated soil and the population size of oil-degrading bacteria. The presence of mesquite plants significantly enhanced oil degradation in all treatments except when biochar was used as the sole amendment without compost. The greatest extent of oil degradation was achieved in soil planted with mesquite and amended with compost (44% of the light hydrocarbon fraction). Most probable number assays showed that biochar generally reduced the population size of the oil-degrading community. The results of this study suggest that biochar addition to petroleum-contaminated soils does not improve the rate of bioremediation. In contrast, the use of plants and compost additions to soil are confirmed as important bioremediation technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号