首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of the study was (1) to assess changes in electromyographical (EMG) and mechanomyographical (MMG) signals of the biceps and triceps brachii muscles during absolute submaximal load holding in Parkinson’s disease patients tested during their medication “ON-phase” and in age-matched controls, and (2) to check whether mechanomyography can be useful in evaluation of neuromuscular system activity in Parkinson’s disease patients.The data analysis was performed on nine females with Parkinson’s disease and six healthy, age-matched females. The EMG and MMG signals were recorded from the short head of the biceps brachii (BB) and the lateral head of the triceps brachii (TB) muscles.It was concluded that compared to the controls, the Parkinson’s disease patients exhibited higher amplitude in the biceps brachii muscle and lower median frequency of the MMG signal in the both tested muscles. However, no differences in the EMG amplitude and an increase of the EMG median frequency in the triceps brachii muscle of the Parkinson’s disease group were observed. The MMG was not affected by physiological postural tremor and can depict differences between parkinsonians and controls, which may suggest that it is valuable tool for neuromuscular assessment for this condition.  相似文献   

2.
The electromyograms (EMG) of shivering human subjects exposed to 0 degrees C air in an environmental chamber were analyzed to detect slow-amplitude modulations (SAMs, less than 1 Hz) in the EMGs of widely separated muscles and to study the relationship of these SAMs to respiration rate and skin temperature. Distinct amplitude modulations were observed in the raw EMGs during shivering. The peaks in EMG activity occurred simultaneously in the majority of the monitored muscles in all subjects. Pearson correlations between the average rectified EMGs of 93% of the muscles were significant (P less than 0.05). Visual analysis of the EMG and respiration signals indicated that the peaks in muscular activity occurred 6-12 times/min, whereas respiration ranged from 10 to 23 cycles/min. For all subjects respiration was at a higher frequency than amplitude modulation in the EMG. Comparison of EMG records with expiratory flow rate traces in shivering subjects indicated no one-to-one correlation between the occurrence of respiration and EMG amplitude modulations. Respiratory flow rate and average rectified EMG showed significant correlation in only 33% of the cases. In addition, skin temperature changes could not be correlated with the SAMS.  相似文献   

3.
Surgical methods developed to implant EMG (electromyogram) transmitters in Atlantic salmon Salmo salar were tested to calibrate electromyograms from axial red musculature to swimming speed in a swim speed chamber, and to compare electromyograms of fish from two stocks (Lone and Imsa). Ten Lone and eight Imsa salmon were equipped with internal EMG transmitters. Surgical procedures were acceptable, with 100% survival of all implanted fish during the study. It was possible to calibrate EMG pulse intervals to swimming speed in 14 of the 18 salmon run in the swim speed chamber ( r2= 0·35-0·76 for individuals, 0·63 for pooled data). Individuals differed in their EMG resting levels (EMGs recorded at 0·5 ms−1), and so higher correlations were obtained between swimming speed and an activity index (EMG pulse intervals at different speeds/EMG resting levels) (pooled data, r2 =0·75). The linear relationship between swimming speed and EMG pulse intervals differed significantly between the two stocks ( P <0·05). This successful calibration of EMGs to swimming speed opens the possibility of calibrating EMGs to oxygen consumption and the measurement of the metabolic costs of activity in field experiments.  相似文献   

4.
Portable amplifiers that record electromyograms (EMGs) for longer than four hours are commonly priced over $20,000 USD. This cost, and the technical challenges associated with recording EMGs during free-living situations, typically restrict EMG use to laboratory settings. A low-cost system (μEMG; OT Bioelecttronica, 100€), using specialized concentric bipolar electrodes, has been developed specifically for free-living situations. The purpose of this study was to validate the μEMG system by comparing EMGs from μEMG with a laboratory-based alternative (Telemyo 900; Noraxon USA, Inc.). Surface EMGs from biceps brachii (BB) and tibialis anterior (TA) of ten subjects were recorded simultaneously with both systems as subjects performed maximal voluntary contractions (MVCs), submaximal contractions at 25%, 50%, and 75% MVC, seven simulated activities of daily living (ADLs), and >60 min of simulated free-living inside the laboratory. In general, EMG parameters (e.g., average full-wave rectified EMG amplitude) derived from both systems were not significantly different for all outcome variables, except there were small differences across systems in baseline noise and absolute EMG amplitudes during MVCs. These results suggest that μEMG is a valid approach to the long-term recording of EMG.  相似文献   

5.
This study investigates whether knee position affects the amplitude distribution of surface electromyogram (EMG) in the medial gastrocnemius (MG) muscle. Of further concern is understanding whether knee-induced changes in EMG amplitude distribution are associated with regional changes in MG fibre length. Fifteen surface EMGs were acquired proximo-distally from the MG muscle while 22 (13 male) healthy participants (age range: 23–47 years) exerted isometric plantar flexion at 60% of their maximal effort, with knee fully extended and at 90 degrees flexion. The number of channels providing EMGs with greatest amplitude, their relative proximo-distal position and the EMG amplitude averaged over channels were considered to characterise changes in myoelectric activity with knee position. From ultrasound images, collected at rest, fibre length, pennation angle and fat thickness were computed for MG proximo-distal regions. Surface EMGs detected with knee flexed were on average five times smaller than those collected during knee extended. However, during knee flexed, relatively larger EMGs were detected by a dramatically greater number of channels, centred at the MG more proximal regions. Variation in knee position at rest did not affect the proximo-distal values obtained for MG fibre length, pennation angle and fat thickness. Our main findings revealed that, with knee flexion: i) there is a redistribution of activity within the whole MG muscle; ii) EMGs detected locally unlikely suffice to characterise the changes in the neural drive to MG during isometric contractions at knee fully extended and 90 degrees flexed positions; iii) sources other than fibre length may substantially contribute to determining the net, MG activation.  相似文献   

6.
Parkinson’s disease (PD) is a neurodegenerative disease which causes rigidity, resting tremor and postural instability. Treatment for this disease is still under investigation. Mucuna pruriens (L.), is a traditional herbal medicine, used in India since 1500 B.C., as a neuroprotective agent. In this present study, we evaluated the therapeutic effects of aqueous extract of M. pruriens (Mp) seed in Parkinsonian mouse model developed by chronic exposure to paraquat (PQ). Results of our study revealed that the nigrostriatal portion of Parkinsonian mouse brain showed significantly increased levels of nitrite, malondialdehyde (MDA) and reduced levels of catalase compared to the control. In the Parkinsonian mice hanging time was decreased, whereas narrow beam walk time and foot printing errors were increased.  相似文献   

7.
The relationship between diaphragm electromyogram (EMG), isometric force, and length was studied in the canine diaphragm strip with intact blood supply and innervation under three conditions: supramaximal tetanic (100 Hz) phrenic nerve stimulation (STPS; n = 12), supramaximal phrenic stimulation at 25 Hz (n = 15), and submaximal phrenic stimulation at 25 Hz (n = 5). In the same preparation, the EMG-length relationship was also examined with direct muscle stimulation when the neuromuscular junction was blocked. EMG from three different sites and via two types of electrodes (direct or sewn-in and surface) were recorded during isometric contraction at different lengths. Direct EMGs were recorded from two bipolar electrodes sutured into the strip, one near its central end and the other near its costal end. A third EMG electrode configuration summed potentials from the whole strip by recording potentials between central and costal sites. Surface EMGs were recorded by a bipolar spring clip electrode that made contact with upper and lower surfaces of the muscle strip with light pressure. In all conditions of stimulation with different types of electrodes, all EMGs decreased significantly (P less than 0.05) when muscle length was changed from 50 to 120% of resting length (L0). Minimal and maximal force outputs were observed at 50 and 120% of L0, respectively, in all experiments. The results of this study indicated that the muscle length is a significant variable that affects the EMG recording and that the diaphragmatic EMG may not be an accurate reflection of phrenic nerve activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The purpose of this study was to compare four different methods of normalising electromyograms (EMGs) recorded during normal gait. Comparisons were made between the amplitude, intra-individual variability and inter-individual variability of EMGs. Surface EMGs were recorded from the biceps femoris, semitendinosus, vastus lateralis and vastus medialis of ten males and two females while they walked on a treadmill at a self-selected speed. EMGs from the same muscles were subsequently recorded during isometric maximal voluntary contractions (MVCs) and concentric, isokinetic MVCs that were performed between 0.52 and 7.85 rad·s−1 on a BIODEX dynamometer. EMGs were also recorded during eccentric, isokinetic MVCs between 0.52 and 2.62 rad·s−1. Gait EMGs were then normalised at 2% intervals of the gait cycle by expressing them as a percentage of the following reference values: the mean (mean dynamic method) and the peak (peak dynamic method) EMG from the intra-individual ensemble average; the EMG from an isometric MVC (isometric MVC method); and the EMG from an isokinetic MVC that occurred with the same muscle action, length and velocity of musculotendinous unit as the gait EMGs (isokinetic MVC method). The isokinetic MVC method produced significantly greater (P<0.05) intra-individual variability compared to the other methods when it was measured using the variance ratio. Inter-individual variability of gait EMGs, again measured using the variance ratio, was also greatest when they were normalised using the isokinetic MVC method. The pattern and amplitude of EMGs normalised using the isometric MVC method and the isokinetic MVC method were very similar (root mean square difference and absolute difference both less than 3%). It was concluded that the isokinetic MVC method should not be adopted by gait researchers or clinicians as it does not reduce intra- or inter-individual variability anymore than existing normalisation methods, nor does it provide a more representative measure of muscle activation during gait than the isometric MVC method.  相似文献   

9.
The effect of end-expiratory occlusion on respiratory muscle activity was studied in 10 unsedated preterm infants during sleep. Electromyograms (EMG) of the upper airway were recorded from surface electrodes placed over the submental (SM) area; diaphragm (DIA) EMGs were obtained with identical electrodes over the right subcostal margin. Phasic SM EMG accompanied 56 +/- 36% of breaths during spontaneous breathing and increased to 80 +/- 26% (P less than 0.05) on the first inspiratory effort after occlusion. Occlusion increased peak amplitude (P less than 0.001) and total duration (P less than 0.005) of the SM EMG without significant changes in its initial rate of rise. In contrast, only the total duration of the DIA EMG increased (P less than 0.005) during occlusion. Inspiratory time increased from 470 +/- 120 to 720 +/- 210 ms (P less than 0.001) during the first occluded effort, but expiratory time did not change. With sustained occlusion, peak amplitude of the SM EMG progressively increased, but DIA EMG only significantly increased by the third occluded effort. Pharyngeal patency was invariably maintained throughout the induced airway occlusions. Sharp bursts of SM EMG activity coincided with resolution of spontaneous obstructive apneic episodes in four infants. The immediate increase in SM EMG associated with airway occlusion may be a mechanism that prevents the development of obstructive apnea.  相似文献   

10.
The parameters of an event-related EEG potential (ERP), P300 wave, are now extensively used as objective neurophysiological indices of the state of cognitive functions. At the same time, information on the effects of the autonomic nervous system on the parameters of P300 is limited. In Parkinson’s disease clinics, in addition to the leading motor disorders, more or less clear psychoemotional, cognitive, and autonomic (in particular cardiovascular) impairments are usually observed. This allows one to study the dependence between the cardiovascular dysfunction and intensity of cognitive disorders in Parkinsonian patients. In our study on this contingent, we analyzed correlations between the parameters of P300 potential, indices of the state of the cognitive sphere (determined using a questionnaire, Mini Mental State Examination, MMSE, and a Luriya’s test), and indices of variational pulsometry. Thirty-five Parkinsonian patients (49 to 74 years, severity of disease 1.5 to 3.0 by the international classification) were examined. We found a negative influence of excessive sympathetic tonus in cardiovascular control on the state of cognitive functions. The latency of P300 potential was longer in patients with greater intensities of sympathetic influences on the cardiovascular system. The coefficients of correlation of the latency of P300 with the amplitude of mode of R-R intervals (AMo), index of tension in the regulatory systems by Baevskii (IT), and index of autonomic balance by Baevskii (IAB) were 0.52 (P < 0.01), 0.36 (P < 0.05), and 0.37 (P < 0.05), respectively. The above autonomic indices demonstrated significant negative correlations with the volume of short-term memory measured by Luriya’s test. The P300 latency, in turn, showed negative correlations with the memory volume estimated by the MMSE scale and Luriya’s test. With increase in the age of patients, the degree of the above-mentioned correlations between the P300 latency, memory volume (by Luriya’s test), and parameters of variational pulsometry increased. Our data emphasize the expedience of “routine” studies of the balance of sympathetic and parasympathetic control in pathological states accompanied by clear or subclinical cognitive disorders. Early recognition of cardiovascular dysfunction and its corresponding therapeutic correction should improve the state of brain functions and quality of life in patients suffering from neurodegenerative diseases, in particular from Parkinson’s disease. Neirofiziologiya/Neurophysiology, Vol. 40, No. 1, pp. 43–52, January–February, 2008.  相似文献   

11.
Electromyograms (EMGs) are measured by bipolar surface electrodes that quantify potential differences. Bipolar potentials over penniform muscles may be associated with errors. Our assumption was that muscle activity can be quantified more reliably and with a higher spatial resolution using current measurements.The purpose of this work is: (a) to introduce the concept of current measurements to detect muscle activity, (b) to show the coherences observed over a segment of a typical penniform muscle, the gastrocnemius medialis where one would expect a synchronicity of the activation, and (c) to show the amount of mixing that is caused by the finite inter electrode resistance.A current amplifier was developed. EMGs were recorded at 40% of maximum voluntary contraction during isometric contractions of the gastrocnemius medialis. EMGs of twelve persons were recorded with an array of four peripheral and one central electrode. Monopolar EMGs were recorded for “all-potential”, “center at current” and “all-current” conditions. Coherence revealed the similarity of signals recorded from neighboring electrodes.Coherence was high for the “all-potential”, significant for the “current at center” condition and disappeared in the “all-current” condition.It was concluded that EMG array recordings strongly depends on the measurement configuration. The proposed current amplifier significantly improves spatial resolution of EMG array recordings because the inter-electrode cross talk is reduced.  相似文献   

12.
The aim of the present study was to elucidate the electrophysiological manifestations of selective fast motor unit (MU) activation by electrical stimulation (ES) of knee extensor muscles. In six male subjects, test contraction measurement at 40% maximal voluntary contraction (MVC) was performed before and at every 5 min (5, 10, 15 and 20 min) during 20-min low intensity intermittent exercise of either ES or voluntary contractions (VC) at 10% MVC (5-s isometric contraction and 5-s rest cycles). Both isolated intramuscular MU spikes obtained from three sets of bipolar fine-wire electrodes and surface electromyogram (EMG) were simultaneously recorded and were analyzed by means of a computer-aided intramuscular spike amplitude-frequency analysis and frequency power spectral analysis, respectively. Results indicated that mean MU spike amplitude, particularly those MUs with relatively large amplitude, was significantly reduced while those MUs with small spike amplitude increased their firing rate during the 40% MVC test contraction after the ES. This was accompanied by the increased amplitude of surface EMG (rmsEMG). However, no such significant changes in the intramuscular and surface EMGs were observed after VC. These findings indicated differential MU activation patterns in terms of MU recruitment and rate coding characteristics during ES and VC, respectively. Our data strongly suggest the possibility of "an inverse size principle" of MU recruitment during ES.  相似文献   

13.
The effect of medication (Nakom, Cyclodol, and Bromocriptine for 3–6 months) on the electromyogram (EMG) parameters of muscular fatigue and recovery after exercise was studied in patients with Parkinson’s disease (PD). Healthy age-matched subjects served as a control group. In the patients on medication, tolerance to exercise increased approximately twofold and the maximum strength during fatigue and recovery was lower than before medication. In the control subjects, the number of flexions was twofold higher than in the patients on medication. In the patients before medication, the turn count and the mean EMG amplitude were higher and the turn-amplitude peak ratio was lower than on medication, suggesting a treatment-induced decrease in muscular rigidity. Medication changed the EMG parameters of fatigue and recovery to values more characteristic of healthy young subjects than of healthy elderly ones. Thus, the increased tolerance to exercise revealed in the PD patients on medication by turn-amplitude and muscular strength analyses could lead to an increased working capacity and deeper fatigue.__________Translated from Fiziologiya Cheloveka, Vol. 31, No. 4, 2005, pp. 81–87.Original Russian Text Copyright © 2005 by Antonen, Meigal, Lupandin.  相似文献   

14.
 Fast aiming movements were measured in a choice reaction paradigm in a healthy control group and in Parkinsonian patients. The patients were tested without (‘off ’) and with 3,4-dihydroxyphenylalanine (‘on’) (L-dopa) medication. The movement trajectories were used to estimate the parameters of a dynamic linear model. The model is based on the functional structure of the basal ganglia-thalamocortical circuit with direct and indirect pathways linking the putamen to the basal ganglia output nuclei (Albin et al. 1989). The output of the circuit is connected to a model for the motor neuron-musculo-skeletal system. The gain k d for the direct pathway and the gain k i for the indirect pathway were estimated. They were found to be significantly decreased for Parkinsonian patients in ‘off ’ compared with the control group. L-dopa therapy in Parkinsonian patients increased the gains of the direct and the indirect pathway almost to normal values which implies that the long-term dopamine level in the striatum was excitatory for the direct and for the indirect pathway. This result is restricted to movements of correct size. For movements of diminished size, which are typical for Parkinsonian patients, the model predicts that the dopamine level in the striatum is excitatory for the direct pathway but inhibitory for the indirect pathway. The simulated values for neuronal activities are in agreement with expected values according to the experimental data. The proposed model of the ‘motor’ basal ganglia thalamocortical circuit implies that information about biomechanical properties of the musculo-skeletal system is stored in the ‘motor’ basal ganglia-thalamocortical circuit, and that the basal ganglia are involved in computation of the desired movement amplitude. Received: 24 April 1996/Accepted in revised form: 25 February 1997  相似文献   

15.
[3H]spiroperidol binding has been measured in lymphocytes from patients with Parkinson's disease and age matched healthy volunteers. A dramatic decrease (73%) in the number of binding sites (Bmax) without any variation of the affinity (KD) has been observed in Parkinsonian patients. This decrease in Bmax is linearly correlated with the degree of disability of the Parkinsonian patients (r = 0.891, p <0.001). This decrease appeared to be relatively selective since no variation was observed with patients suffering of other neurological disorders (vascular hemiplegia, Alzeihmer's disease, olivopontocerebellar degeneration, Huntington's chorea).  相似文献   

16.
Cortical oscillatory signals of single and double tremor frequencies act together to cause tremor in the peripheral limbs of patients with Parkinson''s disease (PD). But the corticospinal pathway that transmits the tremor signals has not been clarified, and how alternating bursts of antagonistic muscle activations are generated from the cortical oscillatory signals is not well understood. This paper investigates the plausible role of propriospinal neurons (PN) in C3–C4 in transmitting the cortical oscillatory signals to peripheral muscles. Kinematics data and surface electromyogram (EMG) of tremor in forearm were collected from PD patients. A PN network model was constructed based on known neurophysiological connections of PN. The cortical efferent signal of double tremor frequencies were integrated at the PN network, whose outputs drove the muscles of a virtual arm (VA) model to simulate tremor behaviors. The cortical efferent signal of single tremor frequency actuated muscle spindles. By comparing tremor data of PD patients and the results of model simulation, we examined two hypotheses regarding the corticospinal transmission of oscillatory signals in Parkinsonian tremor. Hypothesis I stated that the oscillatory cortical signals were transmitted via the mono-synaptic corticospinal pathways bypassing the PN network. The alternative hypothesis II stated that they were transmitted by way of PN multi-synaptic corticospinal pathway. Simulations indicated that without the PN network, the alternating burst patterns of antagonistic muscle EMGs could not be reliably generated, rejecting the first hypothesis. However, with the PN network, the alternating burst patterns of antagonist EMGs were naturally reproduced under all conditions of cortical oscillations. The results suggest that cortical commands of single and double tremor frequencies are further processed at PN to compute the alternating burst patterns in flexor and extensor muscles, and the neuromuscular dynamics demonstrated a frequency dependent damping on tremor, which may prevent tremor above 8 Hz to occur.  相似文献   

17.
This prospective study evaluated differences in vastus medialis (VM) and gluteus medius (GM) EMG amplitude:composite hip abductor (gluteus maximus, gluteus medius, tensor fascia lata) EMG amplitude ratios among subjects with low or high relative femoral anteversion. Data were collected during the performance of a non-weight bearing, non-sagittal plane maximal volitional effort isometric combined hip abduction-external rotation maneuver. Eighteen nonimpaired athletically active females participated in this surface EMG study. Medial hip rotation (relative femoral anteversion estimate) was measured with a handheld goniometer. Subjects were grouped by medial hip rotation displacement (group 1 < or = 42 degrees =36.1+/-7 degrees and group 2 > 42 degrees =52.7+/-7 degrees ) for statistical analysis (Mann Whitney U-tests, p < 0.05). Group 2 had decreased VM (42+/-23% vs. 69+/-30%, U=19, p=0.034) and GM (62+/-25% vs. 96+/-39%, U=19, p=0.034) normalized mean peak EMG amplitude:composite mean peak hip abductor EMG amplitude ratios compared to group 1. Decreased normalized VM (-27%) and GM (-34%) EMG amplitudes among subjects with increased relative femoral anteversion suggest reduced dynamic frontal and transverse plane femoral control from these muscles, possibly contributing to the increased incidence of non-contact knee injury observed among athletic females.  相似文献   

18.
Biofeedback based on electromyograms (EMGs) has been recently proposed to reduce exaggerated postural activity. Whether the effect of EMG biofeedback on the targeted muscles generalizes to – or is compensated by – other muscles is still an open question we address here. Fourteen young individuals were tested in three 60 s standing trials, without and with EMG-audio feedback: (i) collectively from soleus and medial gastrocnemius and (ii) from medial gastrocnemii. The Root Mean Square (RMS) of bipolar EMGs sampled from postural muscles bilaterally was computed to assess the degree of activity and postural sway was assessed from the center of pressure (CoP). In relation to standing at naturally, EMG-audio feedback from soleus and medial gastrocnemii decreased plantar flexors’ activity (∼10 %) but at the cost of increased amplitude of tibialis anterior (∼5%) and vasti muscles (∼20 %) accompanied by a posterior shift of the mean CoP position. However, EMG-audio feedback from medial gastrocnemii reduced only plantar flexors’ activity (∼5%) when compared to standing at naturally. Current results suggest the EMG biofeedback has the potential to reduce calf muscles’ activity without loading other postural muscles especially when using medial gastrocnemii as feedback source, with implications on postural training aimed at assisting individuals in activating more efficiently postural muscles during standing.  相似文献   

19.
The purpose of the study was to evaluate the influence of selected physiological parameters on amplitude cancellation in the simulated surface electromyogram (EMG) and the consequences for spike-triggered averages of motor unit potentials derived from the interference and rectified EMG signals. The surface EMG was simulated from prescribed recruitment and rate coding characteristics of a motor unit population. The potentials of the motor units were detected on the skin over a hand muscle with a bipolar electrode configuration. Averages derived from the EMG signal were generated using the discharge times for each of the 24 motor units with lowest recruitment thresholds from a population of 120 across three conditions: 1) excitation level; 2) motor unit conduction velocity; and 3) motor unit synchronization. The area of the surface-detected potential was compared with potentials averaged from the interference, rectified, and no-cancellation EMGs. The no-cancellation EMG comprised motor unit potentials that were rectified before they were summed, thereby preventing cancellation between the opposite phases of the potentials. The percent decrease in area of potentials extracted from the rectified EMG was linearly related to the amount of amplitude cancellation in the interference EMG signal, with the amount of cancellation influenced by variation in excitation level and motor unit conduction velocity. Motor unit synchronization increased potentials derived from both the rectified and interference EMG signals, although cancellation limited the increase in area for both potentials. These findings document the influence of amplitude cancellation on motor unit potentials averaged from the surface EMG and the consequences for using the procedure to characterize motor unit properties.  相似文献   

20.
Recent evidence suggests different regions of the rectus femoris (RF) muscle respond differently to squat exercises. Such differential adaptation may result from neural inputs distributed locally within RF, as previously reported for isometric contractions, walking and in response to fatigue. Here we therefore investigate whether myoelectric activity distributes evenly within RF during squat. Surface electromyograms (EMGs) were sampled proximally and distally from RF with arrays of electrodes, while thirteen healthy volunteers performed 10 consecutive squats with 20% and 40% of their body weight. The root mean square (RMS) value, computed separately for thirds of the concentric and eccentric phases, was considered to assess the proximo-distal changes in EMG amplitude during squat. The channels with variations in EMG amplitude during squat associated with shifts in the muscle innervation zone were excluded from analysis. No significant differences were observed between RF regions when considering squat phases and knee joint angles individually (P > 0.16) while a significant interaction between phase and knee joint angle with detection site was observed (P < 0.005). For the two loads considered, proximal RMS values were greater during the eccentric phase and for the more flexed knee joint position (P < 0.001). Our results suggest inferences on the degree of RF activation during squat must be made cautiously from surface EMGs. Of more practical relevance, there may be a potential for the differential adaption of RF proximal and distal regions to squat exercises.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号