首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Although serum-free media have been widely used in mammalian cell culture for therapeutic protein production, the effects of serum-substitutes on product quality have not been extensively examined. This study observed an adverse effect of Primatone RL, an animal tissue hydrolysate commonly used as a serum-substitute to promote cell growth, on sialylation of interferon-gamma (IFN-gamma) derived from Chinese hamster ovary (CHO) cell culture in both batch and fed-batch modes. In batch cultures, decreased sialylation was observed at each of the glycosylation sites (i.e., Asn(25) and Asn(97)) of IFN-gamma with the use of elevated concentrations of the peptone. Although poorest sialylation was obtained with the use of a growth-inhibiting concentration of Primatone RL, diminished sialylation was observed at the optimal peptone concentration for cell growth and product yield. Since incubation of the product in Primatone RL-supplemented acellular medium did not result in decreased sialylation, the negative effect of Primatone RL could not be attributed to extracellular desialylation of IFN-gamma by components of the peptone. In the fed-batch mode, a culture utilizing a serum-free feeding medium supplemented with Primatone RL demonstrated poorer sialylation than a similar culture not fed the peptone. The results of both the batch and fed-batch experiments indicate that the adverse effect of the peptone was not due solely to ammonia accumulation. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 353-360, 1997.  相似文献   

2.
Summary A simple and convenient technique was developed based on the principle of Warburg manometric method to measure O2 uptake rate (OUR) and CO2 evolution rate (CER) of suspended cells in a shake flask culture. It was successfully applied to suspension cultures of rice (Oryza sativa) and Panax notoginseng cells, and some important bioprocess parameters, such as OUR, CER, respiratory quotient (RQ), specific OUR (SOUR) and specific CER (SCER), were quantitatively obtained. The measuring system is easy to operate, able to treat many samples simultaneously and is economical.  相似文献   

3.
Peptide hydrolysate supplements in mammalian cell cultures provide enhanced growth and productivity. The objective of this study was to compare the bioactivity of ten different commercially available hydrolysates from plant, microbial, and animal sources. The peptide hydrolysates were tested as supplements to cultures of Chinese hamster ovary (CHO) cells that produce human beta interferon (β‐IFN). A soy hydrolysate was shown to support high cell growth but not protein productivity compared to an animal component hydrolysate (Primatone RL). On the other hand, a yeast hydrolysate showed lower cell growth, but comparable productivity of the recombinant protein. Glycosylation analysis showed that the glycan profile of β‐IFN produced in yeast hydrolysate supplemented cultures was equivalent to that from Primatone RL‐supplemented cultures. Fractionation of the yeast hydrolysate and Primatone RL produced a similar protein‐assayed pattern except for one extra peak at around 1 kDa in the Primatone RL profile. A fraction taken at a molecular weight range of 1.5–1.7 kDa showed the highest growth promoting activity in both samples. However, four other fractions in yeast hydrolysate and two in Primatone RL at lower molecular weights showed some growth promoting activity. In conclusion, the yeast hydrolysates provided a good alternative to the animal sourced Primatone RL for high productivity of β‐IFN from CHO cells with equivalent glycosylation. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:584–593, 2014  相似文献   

4.
The estimation of the intracellular fluxes of mammalian cells using only the mass balances of the relevant metabolites is not possible because the set of linear equations defined by these mass balances is underdetermined. Either additional experimental flux data or additional theoretical constraints are required to find one unique flux distribution out of the solution space that is bound by the mass balances. Here, a method is developed using the latter approach. The uptake and production rates of amino acids, glucose, lactate, O(2), CO(2), NH(4), MAB, and the intracellular amino acid pools have been determined for two different steady-states. The cellular composition {total protein and protein composition, total lipids and fatty acid distribution, total carbohydrates, DNA and RNA} has been measured to calculate the requirements for biosynthesis. It is shown to be essential to determine the uptake/production rates of ammonia and either carbon dioxide or oxygen. In mammalian cells these are cometabolites of cyclic metabolic pathways. The flux distribution that is found using the Euclidean minimum norm as the additional theoretical constraint and taking either the CO(2) or the NAD(P)H mass balance into account is shown to be in agreement with the measured O(2) and CO(2) metabolic rates.The metabolic fluxes in hybridoma cells in continuous culture at a specific growth rate of 0.83 day(-1) are estimated for a medium with (optimal medium) and without (suboptimal medium) Primatone RL, an enzymatic hydrolysate of animal tissue that causes a more than twofold increase in cell density. It is concluded that (i)The majority of the consumed glucose (>90%) is channeled through the pentose-phosphate pathway in rapidly proliferating cells.(ii)Pyruvate oxidation and tricarboxylic acid (TCA) cycle activity are relatively low, i.e., 8% of the glucose uptake in suboptimal and 14% in optimal medium, respectively. Under both conditions, only a small fraction of pyruvate is further oxidized to CO(2).(iii)The flux from glutamate to alpha-ketoglutarate (catalyzed by glutamate dehydrogenase) is almost zero in medium with and even slightly reversed in medium without Primatone RL. Almost all glutamate enters the TCA cycle due to the action of transaminases.(iv)Transhydrogenation plays a significant role in hybridoma cells under our experimental conditions. NADPH is produced at relatively high rates (11 x 10(-12) to 13 x 10(-12) mol . cell(-1) . day(-1)) compared to other fluxes in both culture media. (c) 1996 John Wiley & Sons, Inc.  相似文献   

5.
Respiration rates in Spodoptera frugiperda (Sf-9) cell bioreactor cultures were successfully measured on-line using two methods: The O(2) uptake rate (OUR) was determined using gas phase pO(2) values imposed by a dissolved oxygen controller and the CO(2) evolution rate (CER) was measured using an infrared detector. The measurement methods were accurate, reliable, and relatively inexpensive. The CER was routinely determined in bioreactor cultures used for the production of several recombinant proteins. Simple linear relationships between viable cell densities and both OUR and CER in exponentially growing cultures were used to predict viable cell density. Respiration measurements were also used to follow the progress of baculoviral infections in Sf-9 cultures. Infection led to increases in volumetric and per-cell respiration rates. The relationships between respiration and several other culture parameters, including viable cell density, cell protein, cell volume, glucose consumption, lactate production, viral titer, and recombinant beta-galactosidase accumulation, were examined. The extent of the increase in CER following infection and the time postinfection at which maximum CER was attained were negatively correlated with the multiplicity of infection (MOI) at multiplicities below the level required to infect all the cells in a culture. Delays in the respiration peak related to the MOI employed were correlated with delays in the peak in recombinant protein accumulation. DO levels in the range 5-100% did not exert any major effects on viable cell densities, CER, or product titer in cultures infected with a baculovirus expressing recombinant beta-galactosidase. (c) 1996 John Wiley & Sons, Inc.  相似文献   

6.
流加培养是当前重组蛋白生产的主流培养模式。流加式操作主要是根据细胞对营养物质的不断消耗和需求,设计连续或半连续的流加浓缩营养物,使细胞持续高密度的生长,提高单位反应器体积内目的蛋白产量,从而达到高效生产的目的。流加培养工艺的关键技术主要包培养基的优化设计、流加策略的选择及优化、细胞代谢的调控。  相似文献   

7.
重组毕赤酵母表达工程植酸酶发酵过渡相参数相关分析   总被引:1,自引:0,他引:1  
微生物发酵是一个涉及不同尺度的互相关联的复杂生物系统的过程 ,将重组毕赤酵母表达工程植酸酶过渡相的在线和离线参数进行了相关分析研究。通过对发酵过程的在线细胞代谢生理参数 (OUR)和环境参数 (DO)的变化进行相关分析表明 :甘油和葡萄糖碳源对AOX合成的阻遏强度不同 ,葡萄糖的阻遏性明显强于甘油 ,相对于醇氧化酶启动子 ,葡萄糖为强阻遏性底物。根据甲醇代谢途径关键酶酶活性变化 ,推测出各代谢途径流量分布的变化 ,即甲醇诱导后糖酵解途径和三羧酸循环途径代谢流比例下降 ,而磷酸戊糖途径中代谢流通量上升 ,甲醇完全氧化代谢流成为主要代谢流 ,与过渡相在线参数pH、OUR(CER)和RQ等相关分析的甲醇代谢途径的变化结果一致。此外 ,建立了生产过程在线控制与分析的标准 :当OURCER逐渐增大 ,则可判断甲醇已被利用和启动子已被甲醇成功诱导 ,即工程植酸酶开始启动表达.  相似文献   

8.
We report the development of a new serum-free medium based on the use of factorial experiments. At first, a variety of hydrolysates were screened using a fractional factorial approach with High-Five cells. From this experiment yeastolate ultrafiltrate was found to have, by far, the most important effect on cell growth. Furthermore, Primatone RL was found to remarkably prolong the stationary phase of Sf-9 and High-Five cell cultures. The optimal concentrations for yeastolate and Primatone were determined to be 0.6 and 0.5%, respectively, on the basis of a complete factorial experiment. This new medium, called YPR, supported good growth of both Sf-9 and High-Five cells in batch cultures, with maximal densities of 5.4 and 6.1 x 10(6) cells/ml, respectively. In addition, both cell lines achieved good growth in bioreactor batch culture and had a prolonged stationary phase of 3-4 d in YPR medium compared to Insect-XPRESS medium. The ability of the new medium to support recombinant protein expression was also tested by infecting Sf-9 or High-Five cells at high density (2 x 10(6) cells/ml) with a baculovirus expressing secreted placental alkaline phosphatase (SEAP). The maximum total SEAP concentration after 7 d was about 43 lU/ml (58 mg/L) and 28 lU/ml (39 mg/L) for High-Five and Sf-9 cells, respectively.  相似文献   

9.
Oxygen is a key substrate in animal cell metabolism and its consumption is thus a parameter of great interest for bioprocess monitoring and control. A system for measuring it based on an oxygen balance on the liquid phase was developed. The use of a gas-permeable membrane offered the possibility to provide the required quantity of oxygen into the culture, while avoiding problems of foaming or shear stress generally linked to sparging. This aeration system allowed moreover to keep a known and constant k(L)a value through cultures up to 400 h. Oxygen uptake rate (OUR) was measured on-line with a very good accuracy of +/-5%, and the specific OUR for a CHO cell line was determined during batch (growth phase) and continuous culture as, respectively, equal to 2. 85x10(-13) and 2.54x10(-13) mol O(2) cell(-1) h(-1). It was also shown that OUR continuous monitoring gives actually more information about the metabolic state of the culture than the cell concentration itself, especially during transition phases like the end of the growth phase in a batch culture.  相似文献   

10.
In vivo kinetics of Saccharomyces cerevisiae are studied, in a time window of 150 s, by analyzing the response of O(2) and CO(2) in the fermentor off-gas after perturbation of chemostat cultures by metabolite pulses. Here, a new mathematical method is presented for the estimation of the in vivo oxygen uptake rate (OUR) and carbon dioxide evolution rate (CER) directly from the off-gas data in such perturbation experiments. The mathematical construction allows effective elimination of delay and distortion in the off-gas measurement signal under highly dynamic conditions. A black box model for the fermentor off-gas system is first obtained by system identification, followed by the construction of an optimal linear filter, based on the identified off-gas model. The method is applied to glucose and ethanol pulses performed on chemostat cultures of S. cerevisiae. The estimated OUR is shown to be consistent with the independent dissolved oxygen measurement. The estimated in vivo OUR and CER provide valuable insights into the complex dynamic behavior of yeast and are essential for the establishment and validation of in vivo kinetic models of primary metabolism.  相似文献   

11.
Cyanase is an inducible enzyme in Escherichia coli that catalyzes the reaction of cyanate with bicarbonate to give two CO2 molecules. The gene for cyanase is part of the cyn operon, which includes cynT and cynS, encoding carbonic anhydrase and cyanase, respectively. Carbonic anhydrase functions to prevent depletion of cellular bicarbonate during cyanate decomposition (the product CO2 can diffuse out of the cell faster than noncatalyzed hydration back to bicarbonate). Addition of cyanate to the culture medium of a delta cynT mutant strain of E. coli (having a nonfunctional carbonic anhydrase) results in depletion of cellular bicarbonate, which leads to inhibition of growth and an inability to catalyze cyanate degradation. These effects can be overcome by aeration with a higher partial CO2 pressure (M. B. Guilloton, A. F. Lamblin, E. I. Kozliak, M. Gerami-Nejad, C. Tu, D. Silverman, P. M. Anderson, and J. A. Fuchs, J. Bacteriol. 175:1443-1451, 1993). The question considered here is why depletion of bicarbonate/CO2 due to the action of cyanase on cyanate in a delta cynT strain has such an inhibitory effect. Growth of wild-type E. coli in minimal medium under conditions of limited CO2 was severely inhibited, and this inhibition could be overcome by adding certain Krebs cycle intermediates, indicating that one consequence of limiting CO2 is inhibition of carboxylation reactions. However, supplementation of the growth medium with metabolites whose syntheses are known to depend on a carboxylation reaction was not effective in overcoming inhibition related to the bicarbonate deficiency induced in the delta cynT strain by addition of cyanate. Similar results were obtained with a deltacyn strain (since cyanase is absent, this strain does not develop a bicarbonate deficiency when cyanate is added); however, as with the deltacynT strain, a higher partial CO(2) pressure in the aerating gas or expression of carbonic anhydrase activity (which contributes to a higher intercellular concentration of bicarbonate/CO(2)) significantly reduced inhibition of growth. There appears to be competition between cyanate and bicarbonate/CO(2) at some unknown but very important site such that cyanate binding inhibits growth. These results suggest that bicarbonate/CO(2) plays a significant role in the growth of E. coli other than simply as a substrate for carboxylation reactions and that strains with mutations in the cyn operon provide a unique model system for studying aspects of the metabolism of bicarbonate/CO(2) and its regulation in bacteria.  相似文献   

12.
在批式及灌流培养条件下研究了杂交瘤细胞在无血清培养基中的生长、代谢情况与氧消耗的关系。应用动力学方法在线进行OUR的检测,同时离线取样检测其他参数。结果发现OUR与谷氨酰胺的消耗、抗体的生成及活细胞密度间有明显的相关关系,进一步的分析还发现在对数生长期,OUR与活细胞密度间具有良好的线性关系,qOUR(0.103±0.028)×10-12mol/cell/h,可以通过它来进行细胞密度的在线检测。并通过以ΔOUR=0时刻作为灌流调整点进行连续灌流培养的初步实验验证了OUR作为培养过程反馈控制参数的可能性。  相似文献   

13.
Continous culture experiments with the obligatory methanotroph, Methylosinus trichosporium OB3b, were conducted to study the whole-cell methane monooxygenase (MMO) and nitrogenase activities in a nitrate minimal salts medium under oxygen-limited conditions with methane as the carbone source. The important variables investigated were the feed medium concentrations of copper and nitrate, CO(2) addition, the agitation speed, and the dilution rate. M. trichosporium OB3b required quantitative amounts of copper (2.6 x 10(-4) g Cu/g dry cell Wt) for the exclusive production of particulate MMo during continous culture growth. When the feed medium nitrate concentration was varied in the range of 5-50 mM, the whole-cell specific pMMO activity exhibited a maximum at 40 mM. The elimination of external CO(2) gassing decreased pMMO activity by more than 30%. The steady-state cell density increased continuously over a 300-700 rpm range of agitation speed, whereas, the pMMO activity became maximal at 400 rpm. Also, the pMMO activity increased with the dilution rate up to 0.06 h(-1) and remained constant thereafter. Maximal continuous pMMO productivity was, thus, achieved in Higgin's medium containing 10 muM Cu, 80 muM Fe, and 40 mM nitrate with an agitation speed of 500 rpm and a dilution rate of 0.06 h(-1). Nitrogenase activity, on the other hand, increased over a feed medium copper concentration of 2-15 muM, falling sharply at 20 muM, and it exhibited a minimum at 20 mM when the feed medium nitrate concentration was varied. (c) 1992 John Wiley & Sons, Inc.  相似文献   

14.
Summary A method is proposed to estimate the concentration of metabolically active cells of a microaerobic culture on-line from the measurement of oxygen uptake rate (OUR) and respiratory quotient (RQ). With the cultivation ofEnterobacter aerogenes in a fedbatch mode the estimated active cell concentration agrees well with the viable cell concentration determined by microscopic count and agar plate incubation.  相似文献   

15.
Several metabolic fluxes were analyzed during gradual transitions from aerobic to oxygen-limited conditions in chemostat cultures of Pseudomonas mendocina growing in synthetic medium at a dilution rate of 0.25 h-1. P. mendocina growth was glucose limited at high oxygen partial pressures (70 and 20% pO2) and exhibited an oxidative type of metabolism characterized by respiratory quotient (RQ) values of 1.0. A similar RQ value was obtained at low pO2 (2%), and detectable levels of acetic, formic, and lactic acids were determined in the extracellular medium. RQs of 0.9 +/- 0.12 were found at 70% pO2 for growth rates ranging from 0.025 to 0.5 h-1. At high pO2, the control coefficients of oxygen on catabolic fluxes were 0.19 and 0.22 for O2 uptake and CO2 production, respectively. At low pO2 (2%), the catabolic and anabolic fluxes were highly controlled by oxygen. P. mendocina showed a mixed-type fermentative metabolism when nitrogen was flushed into chemostat cultures. Ethanol and acetic, lactic, and formic acids were excreted and represented 7.5% of the total carbon recovered. Approximately 50% of the carbon was found as uronic acids in the extracellular medium. Physiological studies were performed under microaerophilic conditions (nitrogen flushing) in continuous cultures for a wide range of growth rates (0.03 to 0.5 h-1). A cell population, able to exhibit a near-maximum theoretical yield of ATP (YmaxATP = 25 g/mol) with a number of ATP molecules formed during the transfer of an electron towards oxygen along the respiration chain (P/O ratio) of 3, appears to have adapted to microaerophilic conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
We present robust methods for online estimation of cell specific oxygen uptake and carbon dioxide production rates (q(O2) and q(CO2), respectively) during perfusion cultivation of mammalian cells. Perfusion system gas and liquid phase mass balance expressions for oxygen and carbon dioxide were used to estimate q(O2), q(CO2) and the respiratory quotient (RQ) for Chinese hamster ovary (CHO) cells in perfusion culture over 12 steady states with varying dissolved oxygen (DO), pH, and temperature set points. Under standard conditions (DO = 50%, pH = 6.8, T = 36.5°C), q(O2) and q(CO2) ranges were 5.14-5.77 and 5.31-6.36 pmol/cell day, respectively, resulting in RQ values of 0.98-1.14. Changes to DO had a slight reducing effect on respiration rates with q(O2) and q(CO2) values of 4.64 and 5.47, respectively, at DO = 20% and 4.57 and 5.12 at DO = 100%. Respiration rates were lower at low pH with q(O2) and q(CO2) values of 4.07 and 4.15 pmol/cell day at pH = 6.6 and 4.98 and 5.36 pmol/cell day at pH = 7. Temperature also impacted respiration rates with respective q(O2) and q(CO2) values of 3.97 and 4.02 pmol/cell day at 30.5°C and 5.53 and 6.25 pmol/cell day at 37.5°C. Despite these changes in q(O2) and q(CO2) values, the RQ values in this study ranged from 0.98 to 1.23 suggesting that RQ was close to unity. Real-time q(O2) and q(CO2) estimates obtained using the approach presented in this study provide additional quantitative information on cell physiology both during bioprocess development and commercial biotherapeutic manufacturing.  相似文献   

18.
Different methods for oxygen uptake rate (OUR) determinations in animal cell cultivation were investigated using a high quality mass spectrometer. Dynamic measurements have considerable disadvantages because of disturbances of the growing cells by the necessary variations of dissolved oxygen concentration. Only infrequent discrete measurements are possible using this method. Stationary liquid phase balance yielded better results with much higher frequency. Gas phase balancing has the advantage of not requiring dissolved oxygen measurement and knowledge of K(L)a, both of them are easily biased. It was found that simple gas phase balancing is either very inaccurate (error larger than expected signal) or very slow, with gas phase residence times of several hours. Therefore, a new method of aeration was designed. Oxygen and CO(2) transfer are mainly achieved via sparging. The gas released to the headspace is diluted with a roughly 100-fold stream of an inert gas (helium). Through this dilution, gas ratios are not changed for O(2), CO(2), Ar, and N(2). The measurement of lower concentrations (parts per million and below) is easy using mass spectrometry with a secondary electron multiplier. With this new method an excellent accuracy and sufficient speed of analysis were obtained. All these on-line methods for OUR measurement were tested during the cultivation of animal cells. The new method allowed better study of the kinetics of animal cell cultures as was shown with a hybridoma cell line (HFN 7.1, ATCC CRL 1606) producing monoclonal antibodies against human fibronectin. With the aid of these methods it was possible to find a correlation between a rapid decrease in oxygen uptake rate (OUR) and glutamine concentration. The sudden decrease in OUR can be attributed to glutamine depletion. This provided a basis for the controlled addition of glutamine to reduce the formation of ammonia produced by hydrolysis. This control method based on OUR measurement resulted in increased cell concentration and threefold higher product concentration. (c) 1995 John Wiley & Sons, Inc.  相似文献   

19.
The determination of dissolved CO(2) and HCO(3)(-) concentrations as well as the carbon dioxide production rate in mammalian cell suspension culture is attracting more and more attention since the effects on major cell properties, such as cell growth rate, product quality/production rate, intracellular pH and apoptosis, have been revealed. But the determination of these parameters by gas analysis is complicated by the solution/dissolution of carbon dioxide in the culture medium. This means that the carbon dioxide transfer rate (CTR; which can easily be calculated from off-gas measurement) is not necessarily equal to carbon dioxide production rate (CPR). In this paper, a mathematical method to utilize off-gas measurement and culture pH for cell suspension culture is presented. The method takes pH changes, buffer and medium characteristics that effect CO(2) mass transfer into account. These calculations, based on a profound set of equations, allow the determination of the respiratory activity of the cells, as well as the determination of dissolved CO(2), HCO(3)(-) and total dissolved carbonate. The method is illustrated by application to experimental data. The calculated dissolved CO(2) concentrations are compared with measurements from an electrochemical CO(2) probe.  相似文献   

20.
Fixation by strain DCB-1 of CO2 carbon into cell material and organic acids occurred during growth on pyruvate both with and without thiosulfate. By using sodium [14C]bicarbonate and sodium [2-14C]pyruvate, the isotopic composition of products and cells was investigated. Up to 70% of cell carbon was derived from CO2. CO2 carbon was also incorporated into succinate, formate, and acetate. Both carbons of acetate underwent exchange reactions with CO2, although the carboxyl-group exchange was twice as fast. Because strain DCB-1 uses CO2 as its major but not sole carbon source while deriving energy from pyruvate metabolism, we describe its metabolism as mixotrophic. Other mixotrophic conditions also supported growth. Lactate or butyrate, which could not support growth in mineral medium, could replace pyruvate as the oxidizable substrate only when acetate was added to the medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号