首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The solution conformation of uniformly labeled 15N human thioredoxin has been studied by two-dimensional heteronuclear 15N-1H nuclear magnetic resonance spectroscopy. Assignments of the 15N resonances of the protein are obtained in a sequential manner using heteronuclear multiple quantum coherence (HMQC), relayed HMQC-correlated (COSY), and relayed HMQC-nuclear Overhauser (NOESY) spectroscopy. Values of the 3JHN alpha splittings for 87 of the 105 residues of thioredoxin are extracted from a variant of the HMQC-COSY experiment, known as HMQC-J, and analyzed to give accurate 3JHN alpha coupling constants. In addition, long-range C alpha H(i)-15N(i + 1) scaler connectivities are identified by heteronuclear multiple bond correlation (HMBC) spectroscopy. The presence of these three-bond scaler connectivities in predominantly alpha-helical regions correlates well with the secondary structure determined previously from a qualitative analysis of homonuclear nuclear Overhauser data [Forman-Kay, J. D., Clore, G. M., Driscoll, P.C., Wingfield, P. T., Richards, F. M., & Gronenborn, A. M. (1989) Biochemistry 28, 7088-7097], suggesting that this technique may provide additional information for secondary structure determination a priori. The accuracy with which 3JHN alpha coupling constants can be obtained from the HMQC-J experiment permits a more precise delineation of the beginnings and ends of secondary structural elements of human thioredoxin and of irregularities in these elements.  相似文献   

2.
Escherichia coli thioredoxin (Mr 11,700) usually functions as a hydrogen carrier protein that undergoes reversible oxidation/reduction reactions of its active-site disulfide linkage. By use of a number of assigned and identified resonances in one- and two-dimensional 1H NMR spectra, the two forms of the protein have been compared. Only groups that are relatively close to the active-site Cys-32, Cys-35 linkage such as Trp-28, Trp-31, Phe-27, Ala-29, and Val-25 undergo substantial changes in their 1H NMR chemical shift upon reduction. Various residues that are further removed from the active site, like Tyr-49, Tyr-70, His-6, Phe-12, Phe-81, and Phe-102, appear to be little affected (less than 0.02 ppm) by the reduction, suggesting that the rest of the protein structure is not much affected. Thus, the structural changes that occur upon reduction appear to be localized to the disulfide-containing turn and the central strand of the twisted beta-sheet that directly leads to this turn. Notwithstanding the apparent similarity in the secondary and tertiary structures of the oxidized and reduced forms of the protein, the thermal stability of the protein decreases by 10 degrees C upon the reduction of the single disulfide. This was found by both 1H NMR and near- and far-ultraviolet circular dichroism studies. Oxidized thioredoxin was also more resistant to alkaline denaturation. Furthermore, the exchange rate of the relatively stable slow-exchanging backbone amide protons that are part of the core of the twisted five-stranded beta-sheet of thioredoxin increases substantially after reduction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
H J Dyson  A Holmgren  P E Wright 《Biochemistry》1989,28(17):7074-7087
Complete proton assignments are reported for the 1H nuclear magnetic resonance (NMR) spectrum of Escherichia coli thioredoxin in the oxidized (with active-site disulfide bridge) and reduced (with two sulfhydryl groups) states. The assignments were obtained by using an integrated assignment strategy in which spin systems were identified from a combination of relayed and multiple quantum NMR techniques prior to sequential assignment. Elements of secondary structure were identified in each protein from characteristic nuclear Overhauser effects (NOE), coupling constants, and slowly exchanging amide protons. In both oxidized and reduced thioredoxin, approximately 33% of the 108 amino acid residues participate in a beta-sheet containing four major strands (three antiparallel and one parallel). A further short beta-strand is connected in a parallel fashion at the N-terminal end of the sheet. Two of the antiparallel beta-strands are connected by a 7-residue beta-bulge loop. Three helical segments, also containing approximately 33% of the amino acid residues, are well-defined in both oxidized and reduced thioredoxin. The remaining third of the molecule apparently consists of reverse turns and loops with little defined secondary structure. The global folds of oxidized and reduced thioredoxin are shown to be essentially identical. Both NOE connectivities and chemical shift values for the two proteins are very similar, except in the immediate vicinity of the active site where significant variations in the chemical shift indicate subtle conformational changes. While the overall fold of oxidized thioredoxin is the same in solution and in the crystalline state, some small differences in local conformation are apparent.  相似文献   

4.
Structural and functional relations among thioredoxins of different species   总被引:24,自引:0,他引:24  
Three-dimensional models have been constructed of homologous thioredoxins and protein disulfide isomerases based on the high resolution x-ray crystallographic structure of the oxidized form of Escherichia coli thioredoxin. The thioredoxins, from archebacteria to humans, have 27-69% sequence identity to E. coli thioredoxin. The models indicate that all the proteins have similar three-dimensional structures despite the large variation in amino acid sequences. As expected, residues in the active site region of thioredoxins are highly conserved. These include Asp-26, Ala-29, Trp-31, Cys-32, Gly-33, Pro-34, Cys-35, Asp-61, Pro-76, and Gly-92. Similar residues occur in most protein disulfide isomerase sequences. Most of these residues form the surface around the active site that appears to facilitate interactions with other enzymes. Other structurally important residues are also conserved. A proline at position 40 causes a kink in the alpha-2 helix and thus provides the proper position of the active site residues at the amino end of this helix. Pro-76 is important in maintaining the native structure of the molecule. In addition, residues forming the internal contact surfaces between the secondary structural elements are generally unchanged such as Phe-12, Val-25, and Phe-27.  相似文献   

5.
Thioredoxin is a ubiquitous small protein known to protect cells and tissues against oxidative stress. However, its exact antioxidant nature has not been elucidated. In this report, we present evidence that human thioredoxin is a powerful singlet oxygen quencher and hydroxyl radical scavenger. Human thioredoxin at 3 microM caused 50% inhibition of TEMP-(1)O(2) (TEMPO) adduct formation in a photolysis EPR study. In contrast, Escherichia coli thioredoxin caused 50% inhibition of TEMPO formation at 80 microM. Both E. coli thioredoxin and human thioredoxin inhibited (*)OH dependent DMPO-OH formation as demonstrated by EPR spectrometry. The quenching of (1)O(2) or scavenging of (*)OH was not dependent upon the redox state of thioredoxin. Using a human thioredoxin in which the structural cysteines were mutated to alanine, Trx-C3A, we show that structural cysteines that do not take part in the catalytic functions of the protein are also important for its reactive oxygen scavenging properties. In addition, using a quadruple mutant Trx-C4A, where one of the catalytic cysteines, C35 was mutated to alanine in addition to the mutated structural cysteines, we demonstrated that catalytic cysteines are also required for the scavenging action of thioredoxin. Identification of thioredoxin as a (1)O(2) quencher and (*)OH scavenger may be of significant importance in explaining various redox-related antioxidant functions of thioredoxin.  相似文献   

6.
The ubiquitin-associated (UBA) domain is one of the most frequently occurring motifs that recognize ubiquitin tags. Dsk2p, a UBA-containing protein from Saccharomyces cerevisiae, is involved in the ubiquitin-proteasome proteolytic pathway and has been implicated in spindle pole duplication. Here we present the solution structure of the UBA domain of Dsk2p (Dsk2(UBA)) in complex with ubiquitin. The structure reveals that the UBA domain uses a mode of ubiquitin recognition that is similar to that of the CUE domain, another ubiquitin binding motif that shares low sequence homology but high structural similarity with UBA domains. These two domains, as well as the structurally unrelated ubiquitin binding motif UIM, provide a common, crucial recognition site for ubiquitin, comprising a hydrogen-bonding acceptor for the amide group of Gly-47, and a methyl group that packs against the hydrophobic pocket of ubiquitin formed by Leu-8, Ile-44, His-68, and Val-70.  相似文献   

7.
曹晨  马堃 《生物信息学》2016,14(3):181-187
蛋白质二级结构是指蛋白质骨架结构中有规律重复的构象。由蛋白质原子坐标正确地指定蛋白质二级结构是分析蛋白质结构与功能的基础,二级结构的指定对于蛋白质分类、蛋白质功能模体的发现以及理解蛋白质折叠机制有着重要的作用。并且蛋白质二级结构信息广泛应用到蛋白质分子可视化、蛋白质比对以及蛋白质结构预测中。目前有超过20种蛋白质二级结构指定方法,这些方法大体可以分为两大类:基于氢键和基于几何,不同方法指定结果之间的差异较大。由于尚没有蛋白质二级结构指定方法的综述文献,因此,本文主要介绍和总结已有蛋白质二级结构指定方法。  相似文献   

8.
9.
Present in virtually every species, thioredoxins catalyze disulfide/dithiol exchange with various substrate proteins. While the human genome contains a single thioredoxin gene, plant thioredoxins are a complex protein family. A total of 19 different thioredoxin genes in six subfamilies has emerged from analysis of the Arabidopsis thaliana genome. Some function specifically in mitochondrial and chloroplast redox signaling processes, but target substrates for a group of eight thioredoxin proteins comprising the h subfamily are largely uncharacterized. In the course of a structural genomics effort directed at the recently completed A. thaliana genome, we determined the structure of thioredoxin h1 (At3g51030.1) in the oxidized state. The structure, defined by 1637 NMR-derived distance and torsion angle constraints, displays the conserved thioredoxin fold, consisting of a five-stranded beta-sheet flanked by four helices. Redox-dependent chemical shift perturbations mapped primarily to the conserved WCGPC active-site sequence and other nearby residues, but distant regions of the C-terminal helix were also affected by reduction of the active-site disulfide. Comparisons of the oxidized A. thaliana thioredoxin h1 structure with an h-type thioredoxin from poplar in the reduced state revealed structural differences in the C-terminal helix but no major changes in the active site conformation.  相似文献   

10.
The solution structure of recombinant human thioredoxin (105 residues) has been determined by nuclear magnetic resonance (NMR) spectroscopy combined with hybrid distance geometry-dynamical simulated annealing calculations. Approximate interproton distance restraints were derived from nuclear Overhauser effect (NOE) measurements. In addition, a large number of stereospecific assignments for beta-methylene protons and torsion angle restraints for phi, psi, and chi 1 were obtained by using a conformational grid search on the basis of the intraresidue and sequential NOE data in conjunction with 3JHN alpha and 3J alpha beta coupling constants. The structure calculations were based on 1983 approximate interproton distance restraints, 52 hydrogen-bonding restraints for 26 hydrogen bonds, and 98 phi, 71 psi, and 72 chi 1 torsion angle restraints. The 33 final simulated annealing structures obtained had an average atomic rms distribution of the individual structures about the mean coordinate positions of 0.40 +/- 0.06 A for the backbone atoms and 0.78 +/- 0.05 A for all atoms. The solution structure of human thioredoxin consists of a five-stranded beta-sheet surrounded by four alpha-helices, with an active site protrusion containing the two redox-active cysteines. The overall structure is similar to the crystal and NMR structures of oxidized [Katti, S. K., LeMaster, D. M., & Eklund, H. (1990) J. Mol. Biol. 212, 167-184] and reduced [Dyson, J. H., Gippert, G. P., Case, D. A., Holmgren, A., & Wright, P. (1990) Biochemistry 29, 4129-4136] Escherichia coli thioredoxin, respectively, despite the moderate 25% amino acid sequence homology. Several differences, however, can be noted. The human alpha 1 helix is a full turn longer than the corresponding helix in E. coli thioredoxin and is characterized by a more regular helical geometry. The helix labeled alpha 3 in human thioredoxin has its counterpart in the 3(10) helix of the E. coli protein and is also longer in the human protein. In contrast to these structural differences, the conformation of the active site loop in both proteins is very similar, reflecting the perfect sequence identity for a stretch of eight amino acid residues around the redox-active cysteines.  相似文献   

11.
Tryparedoxin-I is a recently discovered thiol-disulfide oxidoreductase involved in the regulation of oxidative stress in parasitic trypanosomatids. The crystal structure of recombinant Crithidia fasciculata tryparedoxin-I in the oxidized state has been determined using multi-wavelength anomalous dispersion methods applied to a selenomethionyl derivative. The model comprises residues 3 to 145 with 236 water molecules and has been refined using all data between a 19- and 1.4-A resolution to an R-factor and R-free of 19.1 and 22.3%, respectively. Despite sharing only about 20% sequence identity, tryparedoxin-I presents a five-stranded twisted beta-sheet and two elements of helical structure in the same type of fold as displayed by thioredoxin, the archetypal thiol-disulfide oxidoreductase. However, the relationship of secondary structure with the linear amino acid sequences is different for each protein, producing a distinctive topology. The beta-sheet core is extended in the trypanosomatid protein with an N-terminal beta-hairpin. There are also differences in the content and orientation of helical elements of secondary structure positioned at the surface of the proteins, which leads to different shapes and charge distributions between human thioredoxin and tryparedoxin-I. A right-handed redox-active disulfide is formed between Cys-40 and Cys-43 at the N-terminal region of a distorted alpha-helix (alpha1). Cys-40 is solvent-accessible, and Cys-43 is positioned in a hydrophilic cavity. Three C-H...O hydrogen bonds donated from two proline residues serve to stabilize the disulfide-carrying helix and support the correct alignment of active site residues. The accurate model for tryparedoxin-I allows for comparisons with the family of thiol-disulfide oxidoreductases and provides a template for the discovery or design of selective inhibitors of hydroperoxide metabolism in trypanosomes. Such inhibitors are sought as potential therapies against a range of human pathogens.  相似文献   

12.
The DSSP program automatically assigns the secondary structure for each residue from the three-dimensional co-ordinates of a protein structure to one of eight states. However, discrete assignments are incomplete in that they cannot capture the continuum of thermal fluctuations. Therefore, DSSPcont (http://cubic.bioc.columbia.edu/services/DSSPcont) introduces a continuous assignment of secondary structure that replaces 'static' by 'dynamic' states. Technically, the continuum results from calculating weighted averages over 10 discrete DSSP assignments with different hydrogen bond thresholds. A DSSPcont assignment for a particular residue is a percentage likelihood of eight secondary structure states, derived from a weighted average of the ten DSSP assignments. The continuous assignments have two important features: (i) they reflect the structural variations due to thermal fluctuations as detected by NMR spectroscopy; and (ii) they reproduce the structural variation between many NMR models from one single model. Therefore, functionally important variation can be extracted from a single X-ray structure using the continuous assignment procedure.  相似文献   

13.
Kurgan LA  Zhang T  Zhang H  Shen S  Ruan J 《Amino acids》2008,35(3):551-564
Structural class categorizes proteins based on the amount and arrangement of the constituent secondary structures. The knowledge of structural classes is applied in numerous important predictive tasks that address structural and functional features of proteins. We propose novel structural class assignment methods that use one-dimensional (1D) secondary structure as the input. The methods are designed based on a large set of low-identity sequences for which secondary structure is predicted from their sequence (PSSAsc model) or assigned based on their tertiary structure (SSAsc). The secondary structure is encoded using a comprehensive set of features describing count, content, and size of secondary structure segments, which are fed into a small decision tree that uses ten features to perform the assignment. The proposed models were compared against seven secondary structure-based and ten sequence-based structural class predictors. Using the 1D secondary structure, SSAsc and PSSAsc can assign proteins to the four main structural classes, while the existing secondary structure-based assignment methods can predict only three classes. Empirical evaluation shows that the proposed models are quite promising. Using the structure-based assignment performed in SCOP (structural classification of proteins) as the golden standard, the accuracy of SSAsc and PSSAsc equals 76 and 75%, respectively. We show that the use of the secondary structure predicted from the sequence as an input does not have a detrimental effect on the quality of structural class assignment when compared with using secondary structure derived from tertiary structure. Therefore, PSSAsc can be used to perform the automated assignment of structural classes based on the sequences.  相似文献   

14.
In a previous study, we reported the isolation of a cDNA encoding KDRF (KM-102-derived reductase like factor) from the human bone marrow-derived stromal cell line KM-102. Analysis of the sequence of this cDNA revealed it to be the previously reported human thioredoxin reductase cDNA. Human thioredoxin reductase, which was recently isolated from human lung adenocarcinoma NCI-H441 cells as a selenocysteine-containing selenoprotein, and its substrate thioredoxin are thought to be essential for protecting cells from the damage caused by reactive oxygen species. To obtain the selenocysteine-containing recombinant KDRF/thioredoxin reductase, we introduced a secondary structure, which is identical to the selenocysteine insertion signal of Escherichia coli formate dehydrogenase H mRNA, downstream of the TGA in the KDRF/thioredoxin reductase cDNA and expressed it in E. coli. As a result, a significant amount of selenocysteine was incorporated into the C-terminus of the KDRF/thioredoxin reductase protein. The selenocysteine-containing KDRF/thioredoxin reductase showed reducing activities toward human and E. coli thioredoxin, whereas non-selenocysteine-containing KDRF/thioredoxin reductase showed no enzyme activity. Our results suggest that this strategy will be applicable to the production of other mammalian selenocysteine-containing selenoproteins in E. coli.  相似文献   

15.
Engineering the hydrophobic pocket of carbonic anhydrase II   总被引:3,自引:0,他引:3  
Wild-type and mutant human carbonic anhydrases II, where mutations have been made in the hydrophobic pocket of the active site, have been studied by X-ray crystallographic methods. Specifically, mutations at Val-143 (the base of the pocket) lead to significant changes in catalytic activity and protein structure. The obliteration of a well-defined pocket in the Val-143----Phe and Val-143----Tyr mutants results in significantly diminished enzyme activity [(5 x 10(4))-fold and (3 x 10(5))-fold, respectively]; however, the activity of the Val-143----His mutant is diminished less (10(2)-fold), and deepening the pocket in the Val-143----Gly mutant results in only a 2-fold decrease in activity [Fierke et al., 1991 (preceding paper in this issue)]. These results indicate that the hydrophobic pocket is important for substrate association with the enzyme, but there are probably several catalytically acceptable substrate trajectories through this region of the enzyme structure. Additionally, each mutant protein exhibits long-range (ca. 10-15 A) compensatory structural changes which accommodate the Val-143 substitution. As such, the genetic-structural approach represented in this work serves as a three-dimensional paradigm for the redesign of specificity pockets in other protein catalysts.  相似文献   

16.
Summary The backbone NMR resonances of human carbonic anhydase I (HCA I) have been assigned. This protein is one of the largest monomeric proteins assigned so far. The assignment was enabled by a combination of 3D triple-resonance experiments and extensive use of amino acid-specific 15N-labeling. The obtained resonance assignment has been used to evaluate the secondary structure elements present in solution. The solution structure appears to be very similar to the crystal structure, although some differences can be observed. Proton-deuteron exchange experiments have shown that the assignments provide probes that can be used in future folding studies of HCA I.The chemical shift data have been deposited in the BioMagResBank in Madison, WI, U.S.A.  相似文献   

17.
The DSSP program assigns protein secondary structure to one of eight states. This discrete assignment cannot describe the continuum of thermal fluctuations. Hence, a continuous assignment is proposed. Technically, the continuum results from averaging over ten discrete DSSP assignments with different hydrogen bond thresholds. The final continuous assignment for a single NMR model successfully reflected the structural variations observed between all NMR models in the ensemble. The structural variations between NMR models were verified to correlate with thermal motion; these variations were captured by the continuous assignments. Because the continuous assignment reproduces the structural variation between many NMR models from one single model, functionally important variation can be extracted from a single X-ray structure. Thus, continuous assignments of secondary structure may affect future protein structure analysis, comparison, and prediction.  相似文献   

18.

Background

Secondary structures are elements of great importance in structural biology, biochemistry and bioinformatics. They are broadly composed of two repetitive structures namely α-helices and β-sheets, apart from turns, and the rest is associated to coil. These repetitive secondary structures have specific and conserved biophysical and geometric properties. PolyProline II (PPII) helix is yet another interesting repetitive structure which is less frequent and not usually associated with stabilizing interactions. Recent studies have shown that PPII frequency is higher than expected, and they could have an important role in protein – protein interactions.

Methodology/Principal Findings

A major factor that limits the study of PPII is that its assignment cannot be carried out with the most commonly used secondary structure assignment methods (SSAMs). The purpose of this work is to propose a PPII assignment methodology that can be defined in the frame of DSSP secondary structure assignment. Considering the ambiguity in PPII assignments by different methods, a consensus assignment strategy was utilized. To define the most consensual rule of PPII assignment, three SSAMs that can assign PPII, were compared and analyzed. The assignment rule was defined to have a maximum coverage of all assignments made by these SSAMs. Not many constraints were added to the assignment and only PPII helices of at least 2 residues length are defined.

Conclusions/Significance

The simple rules designed in this study for characterizing PPII conformation, lead to the assignment of 5% of all amino as PPII. Sequence – structure relationships associated with PPII, defined by the different SSAMs, underline few striking differences. A specific study of amino acid preferences in their N and C-cap regions was carried out as their solvent accessibility and contact patterns. Thus the assignment of PPII can be coupled with DSSP and thus opens a simple way for further analysis in this field.  相似文献   

19.
Summary The complete assignment of1H and15N backbone resonances and near-complete1H side-chain resonance assignments have been obtained for the reduced form of a mutant of human thioredoxin (105 residues) in which the three non-active site cysteines have been substituted by alanines: C62A, C69A, C73A. The assignments were made primarily on the basis of three-dimensional.15N-separated nuclear Overhauser and Hartmann-Hahn spectroscopy, in conjunction with two-dimensional homonuclear and heteronuclear correlation experiments. Based on comparisons of short-range and interstrand nuclear Overhauser effects, patterns of amide exchange, and chemical-shift differences, the structure appears essentially unchanged from that of the previously determined solution structure of the native protein [Forman-Kay. J.D. et al. (1991)Biochemistry, 30, 2685–2698). An assay for thioredoxin shows that the C62A, C69A, C73A mutant retains activity. The assignment of the spectrum for this mutant of human thioredoxin constitutes the basis for future studies aimed at comparing the details of the active-site conformation in the reduced and oxidized forms of the protein.  相似文献   

20.
13-cis retinoic acid has been shown to be a stereospecific suicide inhibitor of thioredoxin reductase purified from human melanoma tissue. All trans retinoic acid does not inhibit this enzyme. The covalent addition of 13-cis retinoic acid to the thiolate active site of thioredoxin reductase produces a thioether enzyme-inhibitor complex. This has been established by a kinetic analysis and by active site labeling with 3H-13 cis retinoic acid. A mechanism involving Michael addition of the thiolate group in the active site of thioredoxin reductase to the 13-cis double bond of enzyme-bound inhibitor has been proposed. This reaction may be important in the human epidermis because thioredoxin reductase has been shown to be a major antioxidant catalyst in human keratinocytes, melanocytes, melanoma cells, and in human skin as well as in melanoma tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号