首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pyrethroid interactions with dipalmitoyl phosphatidylcholine (DPPC) vesicles have been characterized in bilayers having large and small radii of curvature. The abilities of pyrethroids to alter the gel-fluid phase transition profiles were determined by steady state fluorescence anisotropy and phase-modulation lifetime techniques using the fluorescent probes cis- and trans-parinaric acid. Using the geometric isomers of parinaric acid as membrane probes, pyrethroids were found to lower the phase transition temperature (Tc) of DPPC large multilamellar vesicles with the same order of comparative effectiveness as previously reported using the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH). Permethrin had a greater depressive effect upon the Tc of DPPC in the small unilamellar vesicle (SUV) system than in the large multilamellar system. Conversely, allethrin was less effective in reducing the Tc of DPPC SUVs. The enhanced effect of permethrin in decreasing the Tc of DPPC SUVs was greatest in regions of more rigid lipid packing, as determined by trans-parinaric acid fluorescence parameters. The results indicate that changes in lipid packing configuration caused by differing bilayer radii of curvature may alter the interactive characteristics of pyrethroids with lipid membranes.  相似文献   

2.
The lipid-phase structures of brush border membrane vesicles (BBMV) and basolateral membrane vesicles (BLMV) isolated from rabbit renal cortex were compared by steady-state and phase-modulation measurements of diphenylhexatriene (DPH) and trans- and cis-parinaric acid (tPnA and cPnA) fluorescence. A temperature-scanning system was used which gave reproducible temperature profiles of steady-state and dynamic fluorescence parameters with a resolution of 0.1 degrees C. Steady-state anisotropy of DPH showed a triphasic dependence on temperature with slope discontinuities at 22 +/- 4 and 47 +/- 3 degrees C (BBMV) and at 23 +/- 2 and 48 +/- 1 degrees C (BLMV). At all temperatures, DPH anisotropy in BBMV was greater than that in BLMV. Ground-state heterogeneity analysis of tPnA and cPnA fluorescence lifetime data demonstrated the presence of long (greater than 12 ns) and short (less than 5 ns) lifetime components, interpreted in terms of solid-phase and fluid-phase lipid domains. The fraction of solid-phase phospholipid decreased from 0.9 to 0.1 for BBMV and from 0.7 to 0.3 in BLMV with increasing temperature (10-50 degrees C). In both membranes, tryptophan-PnA fluorescence energy-transfer measurements showed that membrane proteins were surrounded by a fluidlike phospholipid phase. These results demonstrate the inadequacy of steady-state DPH anisotropy data in defining the structural characteristics of complex biological membranes. Results obtained with the phase-sensitive parinaric acid probes demonstrate major differences in the phase structure of the two opposing cell membranes in both the bulk lipid and the lipid microenvironment around membrane proteins.  相似文献   

3.
The matching of hydrophobic lengths of integral membrane proteins and the surrounding lipid bilayer is an important factor that influences both structure and function of integral membrane proteins. The ion channel gramicidin is known to be uniquely sensitive to membrane properties such as bilayer thickness and membrane mechanical properties. The functionally important carboxy terminal tryptophan residues of gramicidin display conformation-dependent fluorescence which can be used to monitor gramicidin conformations in membranes [S.S. Rawat, D.A. Kelkar, A. Chattopadhyay, Monitoring gramicidin conformations in membranes: a fluorescence approach, Biophys. J. 87 (2004) 831-843]. We have examined the effect of hydrophobic mismatch on the conformation and organization of gramicidin in saturated phosphatidylcholine bilayers of varying thickness utilizing the intrinsic conformation-dependent tryptophan fluorescence. Our results utilizing steady state and time-resolved fluorescence spectroscopic approaches, in combination with circular dichroism spectroscopy, show that gramicidin remains predominantly in the channel conformation and gramicidin tryptophans are at the membrane interfacial region over a range of mismatch conditions. Interestingly, gramicidin conformation shifts toward non-channel conformations in extremely thick gel phase membranes although it is not excluded from the membrane. In addition, experiments utilizing self quenching of tryptophan fluorescence indicate peptide aggregation in thicker gel phase membranes.  相似文献   

4.
The matching of hydrophobic lengths of integral membrane proteins and the surrounding lipid bilayer is an important factor that influences both structure and function of integral membrane proteins. The ion channel gramicidin is known to be uniquely sensitive to membrane properties such as bilayer thickness and membrane mechanical properties. The functionally important carboxy terminal tryptophan residues of gramicidin display conformation-dependent fluorescence which can be used to monitor gramicidin conformations in membranes [S.S. Rawat, D.A. Kelkar, A. Chattopadhyay, Monitoring gramicidin conformations in membranes: a fluorescence approach, Biophys. J. 87 (2004) 831-843]. We have examined the effect of hydrophobic mismatch on the conformation and organization of gramicidin in saturated phosphatidylcholine bilayers of varying thickness utilizing the intrinsic conformation-dependent tryptophan fluorescence. Our results utilizing steady state and time-resolved fluorescence spectroscopic approaches, in combination with circular dichroism spectroscopy, show that gramicidin remains predominantly in the channel conformation and gramicidin tryptophans are at the membrane interfacial region over a range of mismatch conditions. Interestingly, gramicidin conformation shifts toward non-channel conformations in extremely thick gel phase membranes although it is not excluded from the membrane. In addition, experiments utilizing self quenching of tryptophan fluorescence indicate peptide aggregation in thicker gel phase membranes.  相似文献   

5.
There is accumulating evidence that peptide-induced perturbations in the order and dynamics of cellular membranes may play a role in the neurotoxicity of amyloid β-peptide (Aβ). Several studies have reported that Aβ decreases fluidity of membranes based on an Aβ-induced increase in the fluorescence anisotropy of diphenylhexatriene (DPH). However, the effect of Aβ on the membrane fluidity is still a subject of controversy, because other studies that employed pyrene as a fluorescent probe have shown that Aβ has the opposite effect. To reveal the reason for this discrepancy, we have examined the effect of Aβ on the fluidity of phosphatidylcholine membranes using spectroscopic methods. The fluorescence anisotropy of DPH is dramatically increased on addition of Aβ to DPH-containing phosphatidylcholine membranes. However, Aβ does not affect the Raman spectrum of the membrane, which is sensitive to the packing order of the hydrocarbon chains of lipids. We have also found that circular dichroism (CD) bands of DPH appear during incubation of DPH-containing membranes with Aβ, whereas DPH is an achiral molecule. The observed CD bands of DPH are induced by a chiral environment of Aβ but not by that of the lipids, because positive CD bands appear regardless of the d/l-chirality of phosphatidylcholine. The findings obtained from CD measurements provide evidence that DPH molecules translocate from the membrane to Aβ. The peptide-mediated extraction of DPH from the membrane may cause changes in the fluorescence anisotropy of DPH, even though Aβ does not affect the fluidity of membranes.  相似文献   

6.
Charged anesthetics selectively alter plasma membrane order   总被引:5,自引:0,他引:5  
W D Sweet  W G Wood  F Schroeder 《Biochemistry》1987,26(10):2828-2835
Although indirect evidence supporting differential lipid fluidity in the two monolayers of plasma membranes has accumulated, unambiguous demonstration of this difference has been difficult to obtain. In the present study, the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH), selective quenching of fluorescence by trinitrophenyl groups, and differential polarized phase fluorescence techniques were used to directly examine the static (order) and dynamic (rotational rate) components of lipid motion in the exofacial and cytofacial leaflets of LM fibroblast plasma membranes. The limiting anisotropy (0.137), the order parameter (0.590), and the rotational relaxation time (1.20 ns) of DPH in the plasma membranes (inner plus outer leaflet) indicated rapid but restricted probe motion in the lipid environment. However, the statics and dynamics of DPH motion in the individual monolayers were significantly (p less than 0.025) different. The limiting anisotropy, order parameter, and rotational relaxation time of DPH in the cytofacial monolayer were 0.036, 0.08, and 0.16 ns, respectively, greater than calculated for the exofacial monolayer of the LM plasma membrane. At appropriate concentrations, phenobarbital and, to a lesser degree, pentobarbital preferentially reduced the limiting anisotropy of DPH calculated for the exofacial leaflet while prilocaine reduced the limiting anisotropy of DPH in the cytofacial leaflet of LM fibroblast plasma membranes. In contrast, the putative cytofacial anesthetic procaine failed to show any preference for either leaflet. Arrhenius plots of DPH fluorescence in LM plasma membranes showed a prominent characteristic break point near 30-32 degrees C. Phenobarbital, pentobarbital, and procaine did not affect this break point while prilocaine selectively abolished it. The break point was therefore assigned to the inner monolayer of the LM plasma membrane.  相似文献   

7.
Interactions of pyrethroids with phosphatidylcholine liposomal membranes   总被引:2,自引:0,他引:2  
Interactions of several pyrethroids with membrane lipids in the form of dipalmitoylphosphatidylcholine (DPPC) liposomes have been studied using fluorescent membrane probes. Fluorescence anisotropy values and lifetimes (determined by phase-shift and demodulation techniques) of the fluorescent probe, 1,6-diphenyl-1,3,5-hexatriene, were decreased in gel phase liposomes by pyrethroids at concentrations on the order of 10 microM. The pyrethroids containing a cyano substituent were also observed to cause collisional quenching of diphenylhexatriene fluorescence. Pyrethroids differed in their effectiveness at lowering the phase transition temperature of DPPC, and in their ability to broaden the temperature range of this transition. The fluorescence intensity of DPPC-incorporated chlorophyll a was used to monitor the pretransition of DPPC and the lateral diffusion of a membrane component located in the polar headgroup region. Permethrin did not affect chlorophyll a fluorescence intensity at any temperature. It may be concluded from these results that pyrethroids are preferentially located in the interior hydrophobic regions of the lipid bilayer, and that these compounds can disorder hydrocarbon packing in the bilayer core. However, polar headgroups were not disordered, and diffusion of membrane components in the polar headgroup region was not altered.  相似文献   

8.
Chloroplast thylakoid lipids have been isolated free of photosynthetic pigments using a combination of high performance liquid and thin layer chromatography. The hydrophobic fluorescent probe, 1,6-diphenyl-1,3,5-hexatriene (DPH) has been incorporated into aqueous dispersions of the isolated lipids in order to investigate dynamic and structural properties of the resulting bilayer membranes. Time dependent fluorescence anisotropy decays have been measured and analysed assuming the wobbling-in-cone model (Kinosita et al., Biophys J 20 (1977) 289–305). The DPH fluorescence lifetimes and the static and dynamic fluorescence anisotropy decay parameters for the probe in a total lipid mixture or in pure digalactosyldiacylglycerol (DGDG), changed in a predictable way with increasing temperature (10°–36°C). For a given temperature, it was found that the total lipid mixture was in general less ordered and showed greater dynamic motion as judged from DPH fluorescence anisotropy and compared with the pure DGDG system, although at 36°C differences in dynamic parameters were less evident. Overall the results obtained emphasize the highly fluid nature of thylakoid membrane lipids and give a basis for investigating how intrinsic proteins modify structural and dynamic properties of the in vivo membrane.  相似文献   

9.
The influence of mature lysozyme fibrils on the structural and physical properties of model membranes composed of phosphatidylcholine (PC) and its mixtures with cardiolipin (CL) (10 mol%) and cholesterol (Chol) (30 mol%) was studied using fluorescent probes DPH, pyrene, Laurdan and MBA. Analysis of pyrene fluorescence spectra along with the measurements of DPH fluorescence anisotropy revealed that the structure of hydrocarbon chains region of lipid bilayer is not affected by the fibrillar aggregates of lysozyme. In contrast, probing the membrane effects by Laurdan and MBA showed the rise of both the generalized polarization of Laurdan and the MBA fluorescence anisotropy, suggesting that amyloid protein induces reduction of bilayer hydration and increase of lipid packing in the interfacial region of model membranes.  相似文献   

10.
J E Baatz  B Elledge  J A Whitsett 《Biochemistry》1990,29(28):6714-6720
The effects of bovine pulmonary surfactant-associated protein B (SP-B) on molecular packing of model membrane lipids (7:1 DPPC/DPPG) were studied by fluorescence anisotropy. The bilayer surface was markedly ordered by SP-B below the gel to fluid phase transition temperature (Tc) while it was only slightly ordered above this temperature as indicated by surface-sensitive probes 6-NBD-PC and 6-NBD-PG. The effects of SP-B on fluorescence anisotropy were concentration dependent, reaching maximal activity at 1-2% protein to phospholipid by weight. Anisotropy measurements of interior-selective fluorescent probes (cis-parinaric acid and DPH) imply that addition of SP-B into the phospholipid shifted the Tc of the model membrane but did not alter lipid order at the membrane interior. Since fluorescence anisotropy studies with trans-parinaric acid, an interior-sensitive probe with high affinity for gel-phase lipids, did not detect any changes in lipid packing or Tc, it is likely that SP-B resides primarily in fluid-phase domains. Fluorescence lifetime measurements indicated that two conformers of the NBD-PC probe exist in this DPPC/DPPG model membrane system. Fluorescence intensity measurements generated with NBD-PC and NBD-PG, in conjunction with information from lifetime measurements, support the concept that SP-B increases the distribution of the short-lifetime conformer in the gel phase. In addition, the anisotropy and intensity profiles of NBD-PG in the model membrane indicate that bovine SP-B interacts selectively with phosphatidylglycerol.  相似文献   

11.
Liposomes consisted of phosphatidylinositol (PI) and phosphatidylcholine (PC) have been utilized as delivery vehicle for drugs and proteins. In the present work, we studied the effect of soy PI on physical properties of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes such as phase state of lipid bilayer, lipid packing and phase properties using multiple orthogonal biophysical techniques. The 6-dodecanoyl-2-dimethylamino naphthalene (Laurdan) fluorescence studies showed that presence of PI induces the formation of fluid phases in DMPC. Differential scanning calorimetry (DSC), temperature dependent fluorescence anisotropy measurements, and generalized polarization values for Laurdan showed that the presence of as low as 10mol% of PI induces substantial broadening and shift to lower temperature of phase transition of DMPC. The fluorescence emission intensity of DPH labeled, PI containing DMPC lipid bilayer decreased possibly due to deeper penetration of water molecules in lipid bilayer. In order to further delineate the effect of PI on the physico chemical properties of DMPC is due to either significant hydrophobic mismatch between the acyl chains of the DMPC and that of soy PI or due to the inositol head group, we systematically replaced soy PI with PC species of similar acyl chain composition (DPPC and 18:2 (Cis) PC) or with diacylglycerol (DAG), respectively. The anisotropy of PC membrane containing soy PI showed largest fluidity change compared to other compositions. The data suggests that addition of PI alters structure and dynamics of DMPC bilayer in that it promotes deeper water penetration in the bilayer, induces fluid phase characteristics and causes lipid packing defects that involve its inositol head group.  相似文献   

12.
R A Parente  B R Lentz 《Biochemistry》1985,24(22):6178-6185
We have investigated the behavior of 1-palmitoyl-2-[[2-[4- (6-phenyl-trans-1,3,5-hexatrienyl)phenyl]ethyl]carbonyl]-3-sn -phosphatidylcholine (DPHpPC) in synthetic, multilamellar phosphatidylcholine vesicles. This fluorescent phospholipid has photophysical properties similar to its parent fluorophore, diphenylhexatriene (DPH). DPHpPC preferentially partitioned into fluid phase lipid (Kf/s = 3.3) and reported a lower phase transition temperature as detected by fluorescence anisotropy than that observed by differential scanning calorimetry. Calorimetric measurements of the bilayer phase transition in samples having different phospholipid to probe ratios demonstrated very slight changes in membrane phase transition temperature (0.1-0.2 degree C) and showed no measurable change in transition width. Nonetheless, measurements of probe fluorescence properties suggested that DPHpPC disrupts its local environment in the membrane and may even induce perturbed probe-rich local domains below the phospholipid phase transition. Temperature profiles of steady-state fluorescence anisotropy, limiting anisotropy, differential tangent, and rotational rate were similar to those of DPH below the main lipid phase transition but indicated more restricted rotational motion above the lipid phase transition temperature. As for DPH, the fluorescence decay of DPHpPC could be described by either a single or double exponential both above and below the DPPC phase transition. The choice seemed dependent on the treatment of the sample. The intensity-weighted average lifetime of DPHpPC was roughly 1.5 ns shorter than that of DPH. In summary, the measured properties of DPHpPC and its lipid-like structure make it a powerful probe of membrane structure and dynamics.  相似文献   

13.
S W Tendian  B R Lentz 《Biochemistry》1990,29(28):6720-6729
The temperature-composition phase diagram of mixed dimyristoylphosphatidylserine (DMPS) and dimyristoylphosphatidylcholine (DMPC) small unilamellar vesicles was determined in the presence and absence of bound bovine prothrombin by monitoring the phospholipid order-disorder phase separation using diphenylhexatriene (DPH) fluorescence anisotropy. The shape of the membrane temperature-composition diagram was essentially unaltered by the binding of prothrombin in the presence of Ca2+ although the two-phase (gel/fluid) region was slightly narrowed and shifted by 1-10 degrees C to higher temperatures. This result does not support the popular idea that extensive domains rich in negatively charged phospholipid are induced in response to prothrombin binding. Instead of implying domain formation, our results demonstrate that the observed increase in melting temperature associated with binding of prothrombin to acidic phospholipid membranes can be accounted for by the observed altered membrane order both in the fluid and in the solid lamellar phases. The membrane order in the liquid-crystalline phase increased with increased acidic lipid content, and much more so for DMPS than for dipentadecanoylphosphatidylglycerol (DC15PG). These results demonstrate that simple shifts in membrane phase behavior cannot be properly interpreted to prove the existence of charged lipid domains. In addition, we report the unexpected observation that prothrombin increased the anisotropy of DPH in DMPS/DMPC vesicles in the liquid-crystalline phase in the absence of Ca2+ as well as in its presence. This effect was seen to a lesser extent and only at a much higher charged-lipid content for DC15PG/DMPC vesicles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The effect of treatment of the porcine intestinal brush-border membranes with malondialdehyde (MDA) on their lipid fluidity was examined using a fluorescence probe, 1,6-diphenyl-1,3,5-hexatriene (DPH). When the membranes were treated with MDA, the fluorescence anisotropy of DPH-labeled membranes increased and the amount of DPH molecules incorporated into the membranes decreased from 3.25 to 2.23 nmol/mg protein. In addition, the response of the fluorescence anisotropy of DPH-labeled membranes to benzyl alcohol, a well-known fluidizer, was markedly suppressed by treatment of the membranes with MDA. These results suggest that treatment of the membranes with MDA causes a decrease of the membrane lipid fluidity. This interpretation was further supported by the increase observed in the fluorescence anisotropy of DPH-labeled liposomes prepared from the extracted lipids of MDA-treated membranes. The results of SDS-polyacrylamide gel electrophoresis suggested that the formation of high-molecular-weight aggregates of the membrane proteins is not involved in the increase of the fluorescence anisotropy of DPH-labeled membranes by treatment with MDA. On the basis of these results, changes in the physical properties of the intestinal brush-border membranes by treatment with MDA are discussed.  相似文献   

15.
The conjugated phenyltetraene PTE-ET-18-OMe (all-(E)-1-O-(15'-phenylpentadeca-8',10',12',14'-tetraenyl)-2-O-methyl-rac-glycero-3-phosphocholine) is a recently developed fluorescent lysophospholipid analog of edelfosine, (Quesada et al. (2004) J. Med. Chem. 47, 5333-5335). We investigated the use of this analog as a probe of membrane structure. PTE-ET-18-OMe was found to have several properties that are favorable for fluorescence anisotropy (polarization) experiments in membranes, including low fluorescence in water and moderately strong association with lipid bilayers. PTE-ET-18-OMe has absorbance and fluorescence properties similar to those of diphenylhexatriene (DPH) probes, with about as large a difference between its fluorescence anisotropy in liquid disordered (Ld) and ordered states (gel and Lo) as observed for DPH. Also like DPH, PTE-ET-18-OMe has a moderate affinity for both gel state ordered domains and Lo state ordered domains (rafts). However, unlike fluorescent sterols or DPH (Megha and London (2004) J. Biol. Chem. 279, 9997-10004), PTE-ET-18-OMe is not displaced from ordered domains by ceramide. Also unlike DPH, PTE-ET-18-OMe shows only slow exchange between the inner and outer leaflets of membrane bilayers, and can thus be used to examine anisotropy of an individual leaflet of a lipid bilayer. Since PTE-ET-18-OMe is a zwitterionic molecule, it should not be as influenced by electrostatic interactions as are other probes that do not cross the lipid bilayer but have a net charge. We conclude that PTE-ET-18-OMe has some unique properties that should make it a useful fluorescence probe of membrane structure.  相似文献   

16.
beta-Amyloid peptide (A beta) is the primary constituent of senile plaques, a defining feature of Alzheimer's disease. Aggregated A beta is toxic to neurons, but the mechanism of toxicity is uncertain. One hypothesis is that interactions between A beta aggregates and cell membranes mediate A beta toxicity. Previously, we described a positive correlation between the A beta aggregation state and surface hydrophobicity, and the ability of the peptide to decrease fluidity in the center of the membrane bilayer [Kremer, J. J., et al. (2000) Biochemistry 39, 10309--10318]. In this work, we report that A beta aggregates increased the steady-state anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH) embedded in the hydrophobic center of the membrane in phospholipids with anionic, cationic, and zwitterionic headgroups, suggesting that specific charge--charge interactions are not required for A beta--membrane interactions. A beta did not affect the fluorescence lifetime of DPH, indicating that the increase in anisotropy is due to increased ordering of the phospholipid acyl chains rather than changes in water penetration into the bilayer interior. A beta aggregates affected membrane fluidity above, but not below, the lipid phase-transition temperature and did not alter the temperature or enthalpy of the phospholipid phase transition. A beta induced little to no change in membrane structure or water penetration near the bilayer surface. Overall, these results suggest that exposed hydrophobic patches on the A beta aggregates interact with the hydrophobic core of the lipid bilayer, leading to a reduction in membrane fluidity. Decreases in membrane fluidity could hamper functioning of cell surface receptors and ion channel proteins; such decreases have been associated with cellular toxicity.  相似文献   

17.
The conjugated phenyltetraene PTE-ET-18-OMe (all-(E)-1-O-(15′-phenylpentadeca-8′,10′,12′,14′-tetraenyl)-2-O-methyl-rac-glycero-3-phosphocholine) is a recently developed fluorescent lysophospholipid analog of edelfosine, (Quesada et al. (2004) J. Med. Chem. 47, 5333-5335). We investigated the use of this analog as a probe of membrane structure. PTE-ET-18-OMe was found to have several properties that are favorable for fluorescence anisotropy (polarization) experiments in membranes, including low fluorescence in water and moderately strong association with lipid bilayers. PTE-ET-18-OMe has absorbance and fluorescence properties similar to those of diphenylhexatriene (DPH) probes, with about as large a difference between its fluorescence anisotropy in liquid disordered (Ld) and ordered states (gel and Lo) as observed for DPH. Also like DPH, PTE-ET-18-OMe has a moderate affinity for both gel state ordered domains and Lo state ordered domains (rafts). However, unlike fluorescent sterols or DPH (Megha and London (2004) J. Biol. Chem. 279, 9997-10004), PTE-ET-18-OMe is not displaced from ordered domains by ceramide. Also unlike DPH, PTE-ET-18-OMe shows only slow exchange between the inner and outer leaflets of membrane bilayers, and can thus be used to examine anisotropy of an individual leaflet of a lipid bilayer. Since PTE-ET-18-OMe is a zwitterionic molecule, it should not be as influenced by electrostatic interactions as are other probes that do not cross the lipid bilayer but have a net charge. We conclude that PTE-ET-18-OMe has some unique properties that should make it a useful fluorescence probe of membrane structure.  相似文献   

18.
The fluorescence anisotropy in the mitochondria from vitamin D-treated chicks is significantly lower than that from the vitamin D-deficient animals with the inner core probe DPH. Surface membrane fluidity, measured with the probe TMA-DPH, shows no differences between the organelles of both groups. The fluorescence studies performed in mitochondrial subfractions revealed that cholecalciferol treatment induces a decrease of lipid order parameter S (DPH) in the mitochondrial inner membrane. These results pose the question of whether vitamin D3 participates in the regulation of physiological function of the intestinal mitochondria through changes in the physical properties of the membranes.  相似文献   

19.
Exogenous gangliosides readily associate with the cell membranes and produce marked effects on cell growth and differentiation. We have studied the effect of bovine brain gangliosides (BBG) on the membrane dynamics of intact cells. The structural and dynamic changes in the cell membrane were monitored by the fluorescence probes DPH, TMA-DPH and laurdan. Incorporation of BBG into the cell membrane decreased the fluorescence intensity, lifetime and the steady state anisotropy of TMA-DPH. Analysis of the time resolved anisotropy decay by wobbling in the cone model revealed that BBG decreased the order parameter, and increased the cone angle without altering the rotational relaxation rate. The fluorescence intensity and lifetime of DPH were unaffected by BBG incorporation, however, a modest increase was observed in the steady state anisotropy. BBG incorporation reduced the total fluorescence intensity of laurdan with pronounced quenching of the 440-nm band. The wavelength sensitivity of generalized polarization of laurdan manifested an ordered liquid crystalline environment of the probe in the cell membrane. BBG incorporation reduced the GP values and augmented the liquid crystalline behavior of the cell membrane. BBG incorporation also influenced the permeability of cell membranes to cations. An influx of Na+ and Ca2+ and an efflux of K+ was observed. The data demonstrate that incorporation of gangliosides into the cell membrane substantially enhances the disorder and hydration of the lipid bilayer region near the exoplasmic surface. The inner core region near the center of the bilayer becomes slightly more ordered and remains highly hydrophobic. Such changes in the structure and dynamics of the membrane could play an important role in modulation of transmembrane signaling events by the gangliosides.  相似文献   

20.
The thermotropic behavior of intact bacterial membranes and vesicles prepared from total and polar lipids isolated from Bacillus subtilis cultures grown at 37 degrees C in normal (LB) and hyperosmotic (LBN) conditions was studied using 1,6-diphenyl-1,3,5-hexatriene (DPH), 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene p-toluenesulfonate (TMA-DPH), and 2-diethylamino-6-lauroyl-naphthalene (Laurdan) as fluorescent probes. No phase transition of bulk lipids was observed in these preparations at the range of temperature studied. The anisotropy values (r(s)) for DPH and TMA-DPH in purified membranes showed significant differences between the LB and LBN conditions, suggesting that there was an increase in membrane packing during the adaptation to osmotic stress. Furthermore, generalized polarization (GP) parameters for Laurdan indicated small but significant changes in water relaxation at the membrane hydrophobic/hydrophilic interface. Membrane preparations showed r(s) higher values than those of lipid vesicles and a higher temperature dependence of the Laurdan GP parameter. This fact indicates that membrane proteins increase the lipid packing and keep the membrane more sensitive to temperature changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号