首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Autophagy》2013,9(11):1397-1399
A close relationship exists between autophagy and endocytosis with both sharing lysosomes as their common end-point. Autophagy even requires a functional endocytic pathway. The point at which the two pathways merge, i.e., fusion of autophagosomes and endosomes with lysosomes is poorly understood. Early work in yeast and more recent studies in mammalian cells suggested that conventional membrane trafficking pathways control the fusion of autophagosomes with lysosomes; Rab GTPases are required to recruit tethering proteins which in turn coordinate the SNARE family of proteins that directly drive membrane fusion. Some components required for endosomes to fuse with lysosomes are also shared by autophagosomes; both are thought to require the GTPase Rab7 and the homotypic fusion and vacuole protein sorting (HOPS) complex. Essentially, the autophagosome becomes endosome-like, allowing it to recruit the common fusion machinery to deliver its contents to the lysosome. This raises an interesting question of how the cell determines when the autophagosome is ready to fuse with the endocytic system and bestows upon it the properties required to recruit the fusion machinery. Our recent work has highlighted this conundrum and shown that autophagosome fusion with lysosomes has specific distinctions from the parallel endosomal-lysosomal pathway.  相似文献   

2.
Ganley IG  Wong PM  Jiang X 《Autophagy》2011,7(11):1397-1399
A close relationship exists between autophagy and endocytosis with both sharing lysosomes as their common end-point. Autophagy even requires a functional endocytic pathway. The point at which the two pathways merge, i.e., fusion of autophagosomes and endosomes with lysosomes is poorly understood. Early work in yeast and more recent studies in mammalian cells suggested that conventional membrane trafficking pathways control the fusion of autophagosomes with lysosomes; Rab GTPases are required to recruit tethering proteins which in turn coordinate the SNARE family of proteins that directly drive membrane fusion. Some components required for endosomes to fuse with lysosomes are also shared by autophagosomes; both are thought to require the GTPase Rab7 and the homotypic fusion and vacuole protein sorting (HOPS) complex. Essentially, the autophagosome becomes endosome-like, allowing it to recruit the common fusion machinery to deliver its contents to the lysosome. This raises an interesting question of how the cell determines when the autophagosome is ready to fuse with the endocytic system and bestows upon it the properties required to recruit the fusion machinery. Our recent work has highlighted this conundrum and shown that autophagosome fusion with lysosomes has specific distinctions from the parallel endosomal-lysosomal pathway.  相似文献   

3.
《Autophagy》2013,9(5):452-460
During the process of autophagy, autophagosomes undergo a maturation process consisting of multiple fusions with endosomes and lysosomes, which provide an acidic environment and digestive function to the interior of the autophagosome. Here we found that a fusion protein of monomeric Red-fluorescence protein and LC3, the most widely used marker for autophagosomes, exhibits a quite different localization pattern from that of GFP-LC3. GFP-LC3 loses fluorescence due to lysosomal acidic and degradative conditions but mRFP-LC3 does not, indicating that the latter can label the autophagic compartments both before and after fusion with lysosomes. Taking advantage of this property, we devised a novel method for dissecting the maturation process of autophagosomes. mRFP-GFP tandem fluorescent-tagged LC3 (tfLC3) showed a GFP and mRFP signal before the fusion with lysosomes, and exhibited only the mRFP signal subsequently. Using this method, we provided evidence that overexpression of a dominant negative form of Rab7 prevented the fusion of autophagosomes with lysosomes, suggesting that Rab7 is involved in this step. This method will be of general utility for analysis of the autophagosome maturation process.  相似文献   

4.
Kimura S  Noda T  Yoshimori T 《Autophagy》2007,3(5):452-460
During the process of autophagy, autophagosomes undergo a maturation process consisting of multiple fusions with endosomes and lysosomes, which provide an acidic environment and digestive function to the interior of the autophagosome. Here we found that a fusion protein of monomeric red-fluorescence protein and LC3, the most widely used marker for autophagosomes, exhibits a quite different localization pattern from that of GFP-LC3. GFP-LC3 loses fluorescence due to lysosomal acidic and degradative conditions but mRFP-LC3 does not, indicating that the latter can label the autophagic compartments both before and after fusion with lysosomes. Taking advantage of this property, we devised a novel method for dissecting the maturation process of autophagosomes. mRFP-GFP tandem fluorescent-tagged LC3 (tfLC3) showed a GFP and mRFP signal before the fusion with lysosomes, and exhibited only the mRFP signal subsequently. Using this method, we provided evidence that overexpression of a dominant negative form of Rab7 prevented the fusion of autophagosomes with lysosomes, suggesting that Rab7 is involved in this step. This method will be of general utility for analysis of the autophagosome maturation process.  相似文献   

5.
Autophagosome fusion with a lysosome constitutes the last barrier for autophagic degradation. It is speculated that this fusion process is precisely and tightly regulated. Recent genetic evidence suggests that a set of SNARE proteins, including STX17, SNAP29, and VAMP8, are essential for the fusion between autophagosomes and lysosomes. However, it remains unclear whether these SNAREs are fusion competent and how their fusogenic activity is specifically regulated during autophagy. Using a combination of biochemical, cell biology, and genetic approaches, we demonstrated that fusogenic activity of the autophagic SNARE complex is temporally and spatially controlled by ATG14/Barkor/Atg14L, an essential autophagy-specific regulator of the class III phosphatidylinositol 3-kinase complex (PtdIns3K). ATG14 directly binds to the STX17-SNAP29 binary complex on autophagosomes and promotes STX17-SNAP29-VAMP8-mediated autophagosome fusion with lysosomes. ATG14 homo-oligomerization is required for SNARE binding and fusion promotion, but is dispensable for PtdIns3K stimulation and autophagosome biogenesis. Consequently, ATG14 homo-oligomerization is required for autophagosome fusion with a lysosome, but is dispensable for autophagosome biogenesis. These data support a key role of ATG14 in controlling autophagosome fusion with a lysosome.  相似文献   

6.
Moreau K  Ravikumar B  Renna M  Puri C  Rubinsztein DC 《Cell》2011,146(2):303-317
Autophagy is a catabolic process in which lysosomes degrade intracytoplasmic contents transported in double-membraned autophagosomes. Autophagosomes are formed by the elongation and fusion of phagophores, which can be derived from preautophagosomal structures coming from the plasma membrane and other sites like the endoplasmic reticulum and mitochondria. The mechanisms by which preautophagosomal structures elongate their membranes and mature toward fully formed autophagosomes still remain unknown. Here, we show that the maturation of the early Atg16L1 precursors requires homotypic fusion, which is essential for subsequent autophagosome formation. Atg16L1 precursor homotypic fusion depends on the SNARE protein VAMP7 together with partner SNAREs. Atg16L1 precursor homotypic fusion is a critical event in the early phases of autophagy that couples membrane acquisition and autophagosome biogenesis, as this step regulates the size of the vesicles, which in turn appears to influence their subsequent maturation into LC3-positive autophagosomes.  相似文献   

7.
Lee JA  Gao FB 《Autophagy》2008,4(2):230-232
Autophagy is a regulated pathway for bulk degradation of cytoplasmic contents and organelles, an important process involved in many physiological and pathological conditions in multiple organs, including the nervous system. It has been proposed that developing autophagosomes fuse with late endosomal compartments before their fusion with lysosomes; however, little is known about the functional relationship between the autophagy and endocytic pathways. In the endosomal-lysosomal pathway, a key step in sorting transmembrane cargo proteins is regulated by multimeric complexes called ESCRT (endosomal sorting complex required for transport). We recently reported that dysfunction of ESCRT-III, either by depletion of its essential subunit mSnf7-2 or by expression of a mutant CHMP2B protein associated with frontotemporal dementia linked to chromosome 3 (FTD3), caused autophagosome accumulation and dendritic retraction before neurodegeneration in cultured mature cortical neurons. This defect is likely a result of an abnormal fusion process between autophagosomes and endosomal compartments or lysosomes. This study suggests that defects in the late steps of the autophagy pathway may contribute to the pathogenesis of FTD and potentially other neurodegenerative diseases.  相似文献   

8.
Autophagy, a catabolic pathway that delivers cellular components to lysosomes for degradation, can be activated by stressful conditions such as nutrient starvation and endoplasmic reticulum (ER) stress. We report that thapsigargin, an ER stressor widely used to induce autophagy, in fact blocks autophagy. Thapsigargin does not affect autophagosome formation but leads to accumulation of mature autophagosomes by blocking autophagosome fusion with the endocytic system. Strikingly, thapsigargin has no effect on endocytosis-mediated degradation of epidermal growth factor receptor. Molecularly, while both Rab7 and Vps16 are essential regulatory components for endocytic fusion with lysosomes, we found that Rab7 but not Vps16 is required for complete autophagy flux, and that thapsigargin blocks recruitment of Rab7 to autophagosomes. Therefore, autophagosomal-lysosomal fusion must be governed by a distinct molecular mechanism compared to general endocytic fusion.  相似文献   

9.
Robert W. Button 《Autophagy》2017,13(10):1797-1798
Macroautophagy/autophagy comprises autophagosome synthesis and lysosomal degradation. It is well known that lysosomal defects cause toxicity to cells. However, it has not been investigated previously if cytotoxicity is conferred by autophagosome formation during lysosomal defect. Recently, we found that the formation of autophagosomes in such conditions also causes cytotoxicity, in addition to lysosomal defect insults. We revealed that a partial reduction in autophagosome synthesis was beneficial for cell survival in cells bearing the autophagosome formation-based toxicity. Our study suggests that production/accumulation of autophagosomes during lysosomal defect directly induces cellular toxicity, and this process may be implicated in the pathological conditions where lysosomes are defective.  相似文献   

10.
《Autophagy》2013,9(6):825-827
Degradation of intracellular components via macroautophagy is a complex multi-step process that starts with the sequestration of cytosolic cargo in a de novo formed double-membrane vesicle or autophagosome. This compartment acquires the hydrolases required for cargo digestion by fusion with lysosomes. In contrast to the detailed molecular dissection of the components that participate in the induction, regulation and execution of the early steps in macroautophagy, through the engulfment of cargo in autophagosomes, the mechanisms involved in the lysosomal clearance of autophagosomes have been poorly characterized in mammals. One of the major limitations in this respect has been the fact that autophagosome-lysosome fusion in intact cells involves several independent steps, namely binding of the molecular motors associated to the surface of the vesicles with the cytoskeletal network, directional vesicular trafficking and fusion between the two vesicular compartments. Furthermore, both lysosomes and autophagosomes are very dynamic organelles that can fuse with different vesicular structures involved in macroautophagy, but also along the endocytic and phagocytic pathways. To resolve these limitations and directly analyze the fusion step between autophagosomes and different compartments of the endocytic-lysosomal pathway, we have recently developed an in vitro fusion assay with autophagosomes, lysosomes and endosomes isolated from cells or tissues. Fluorescent labeling of these compartments allows for the tracking of fusion events by fluorescence microscopy or by fluorescence activated cell sorting (FACS). Labeling of either membrane proteins on the surface of the organelles or dye-loading of the vesicles permits the monitoring of hemi-membrane fusion and complete vesicular fusion (cargo mixing).  相似文献   

11.
Macroautophagy sequesters superflous cytosol and organelles into double-membraned autophagosomes. Over 30 autophagy-related (ATG) genes have been identified without elucidating the molecular details of autophagosome biogenesis. All proposed models for autophagosome formation require membrane fusion events (Fig. 1). Previous studies assumed that the autophagic machinery mediates these membrane fusions in a SNARE-independent manner and identified the ubiquitin-like protein Atg8 as a key component especially for elongation of the forming autophagosome. However, if and how Atg8 mediates membrane fusion and why a ubiquitin-like protein is needed for autophagosome biogenesis remained open questions. Since nuclear envelope growth and fusion of Golgi fragments are topologically similar to autophagosome formation and depend on the AAA (+) ATPase p97/VCP and p47 we analyzed the involvement of their yeast homologues Cdc48 and Shp1 in macroautophagy.  相似文献   

12.
Lysosome–autophagosome fusion is critical to autophagosome maturation. Although several proteins that regulate this fusion process have been identified, the prefusion architecture and its regulation remain unclear. Herein, we show that upon stimulation, multiple lysosomes form clusters around individual autophagosomes, setting the stage for membrane fusion. The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein on lysosomes—vesicle-associated membrane protein 8 (VAMP8)—plays an important role in forming this prefusion state of lysosomal clusters. To study the potential role of phosphorylation on spontaneous fusion, we investigated the effect of phosphorylation of C-terminal residues of VAMP8. Using a phosphorylation mimic, we observed a decrease of fusion in an ensemble lipid mixing assay and an increase of unfused lysosomes associated with autophagosomes. These results suggest that phosphorylation not only reduces spontaneous fusion for minimizing autophagic flux under normal conditions, but also preassembles multiple lysosomes to increase the fusion probability for resuming autophagy upon stimulation. VAMP8 phosphorylation may thus play an important role in chemotherapy drug resistance by influencing autophagosome maturation.Subject terms: Cancer therapeutic resistance, Membrane fusion  相似文献   

13.
Macroautophagy/autophagy, which is one of the main degradation systems in the cell, is mediated by a specialized organelle, the autophagosome. Purification of autophagosomes before fusion with lysosomes is important for both mechanistic and physiological studies of the autophagosome. Here, we report a simple method to accumulate undigested autophagosomes. Overexpression of the autophagosomal Qa-SNARE STX17 (syntaxin 17) lacking the N-terminal domain (NTD) or N-terminally tagged GFP-STX17 causes accumulation of autophagosomes. A HeLa cell line, which expresses GFP-STX17ΔNTD or full-length GFP-STX17 under the control of the tetracycline-responsive promoter, accumulates a large number of undigested autophagosomes devoid of lysosomal markers or early autophagy factors upon treatment with doxycycline. Using this inducible cell line, nascent autophagosomes can be easily purified by OptiPrep density-gradient centrifugation and immunoprecipitation. This novel method should be useful for further characterization of nascent autophagosomes.  相似文献   

14.
Chen D  Fan W  Lu Y  Ding X  Chen S  Zhong Q 《Molecular cell》2012,45(5):629-641
Autophagy is a major catabolic pathway in eukaryotes associated with a broad spectrum of human diseases. In autophagy, autophagosomes carrying cellular cargoes fuse with lysosomes for degradation. However, the molecular mechanism underlying autophagosome maturation is largely unknown. Here we report that TECPR1 binds to the Atg12-Atg5 conjugate and phosphatidylinositol 3-phosphate (PtdIns[3]P) to promote autophagosome-lysosome fusion. TECPR1 and Atg16 form mutually exclusive complexes with the Atg12-Atg5 conjugate, and TECPR1 binds PtdIns(3)P upon association with the Atg12-Atg5 conjugate. Strikingly, TECPR1 localizes to and recruits Atg5 to autolysosome membrane. Consequently, elimination of TECPR1 leads to accumulation of autophagosomes and blocks autophagic degradation of LC3-II and p62. Finally, autophagosome maturation marked by GFP-mRFP-LC3 is defective in TECPR1-deficient cells. Thus, we propose that the concerted interactions among TECPR1, Atg12-Atg5, and PtdIns(3)P provide the fusion specificity between autophagosomes and lysosomes and that the assembly of this complex initiates the autophagosome maturation process.  相似文献   

15.
《Autophagy》2013,9(6):985-986
Autophagy is a cellular pathway that degrades damaged organelles, cytosol and microorganisms, thereby maintaining human health by preventing various diseases including cancers, neurodegenerative disorders and diabetes. In autophagy, autophagosomes carrying cellular cargoes fuse with lysosomes for degradation. The proper autophagosome-lysosome fusion is pivotal for efficient autophagy activity. However, the molecular mechanism that specifically directs the fusion process is not clear. Our study reported that lysosome-localized TECPR1 (TECtonin β-Propeller Repeat containing 1) binds the autophagosome-localized ATG12–ATG5 conjugate and recruits it to autolysosomes. TECPR1 also binds PtdIns3P in an ATG12–ATG5-dependent manner. Consequently, depletion of TECPR1 leads to a severe defect in autophagosome maturation. We propose that the interaction between TECPR1 and ATG12–ATG5 initiates the fusion between the autophagosome and lysosome, and TECPR1 is a TEthering Coherent PRotein in autophagosome maturation.  相似文献   

16.
Chen D  Zhong Q 《Autophagy》2012,8(6):985-986
Autophagy is a cellular pathway that degrades damaged organelles, cytosol and microorganisms, thereby maintaining human health by preventing various diseases including cancers, neurodegenerative disorders and diabetes. In autophagy, autophagosomes carrying cellular cargoes fuse with lysosomes for degradation. The proper autophagosome-lysosome fusion is pivotal for efficient autophagy activity. However, the molecular mechanism that specifically directs the fusion process is not clear. Our study reported that lysosome-localized TECPR1 (TECtonin β-Propeller Repeat containing 1) binds the autophagosome-localized ATG12-ATG5 conjugate and recruits it to autolysosomes. TECPR1 also binds PtdIns3P in an ATG12-ATG5-dependent manner. Consequently, depletion of TECPR1 leads to a severe defect in autophagosome maturation. We propose that the interaction between TECPR1 and ATG12-ATG5 initiates the fusion between the autophagosome and lysosome, and TECPR1 is a TEthering Coherent PRotein in autophagosome maturation.  相似文献   

17.
Rui Jia  Carlos M. Guardia  Jing Pu  Yu Chen 《Autophagy》2017,13(10):1648-1663
Whereas the mechanisms involved in autophagosome formation have been extensively studied for the past 2 decades, those responsible for autophagosome-lysosome fusion have only recently begun to garner attention. In this study, we report that the multisubunit BORC complex, previously implicated in kinesin-dependent movement of lysosomes toward the cell periphery, is required for efficient autophagosome-lysosome fusion. Knockout (KO) of BORC subunits causes not only juxtanuclear clustering of lysosomes, but also increased levels of the autophagy protein LC3B-II and the receptor SQSTM1. Increases in LC3B-II occur without changes in basal MTORC1 activity and autophagy initiation. Instead, LC3B-II accumulation largely results from decreased lysosomal degradation. Further experiments show that BORC KO impairs both the encounter and fusion of autophagosomes with lysosomes. Reduced encounters result from an inability of lysosomes to move toward the peripheral cytoplasm, where many autophagosomes are formed. However, BORC KO also reduces the recruitment of the HOPS tethering complex to lysosomes and assembly of the STX17-VAMP8-SNAP29 trans-SNARE complex involved in autophagosome-lysosome fusion. Through these dual roles, BORC integrates the kinesin-dependent movement of lysosomes toward autophagosomes with HOPS-dependent autophagosome-lysosome fusion. These findings reveal a requirement for lysosome dispersal in autophagy that is independent of changes in MTORC1 signaling, and identify BORC as a novel regulator of autophagosome-lysosome fusion.  相似文献   

18.
《Autophagy》2013,9(4):573-575
Ubiquilins (UBQLN), a family of adaptor proteins with partial homology with ubiquitin, are proposed to facilitate proteasomal degradation of ubiquitinated substrates. We now demonstrate a novel role for UBQLN in promoting autophagosome maturation during nutrient deprivation. Ectopic expression of UBQLN protects cells against starvation-induced cell death, while depletion renders cells more susceptible. This protective function requires the essential autophagy regulators, Atg5 and Atg7. The ubiquitin-associated (UBA) domain of UBQLN is required for its association with autophagosomes as well as for its prosurvival functions. Remarkably, during starvation-induced autophagy, UBQLN promotes the fusion of early autophagosomes with lysosomes. Overall, this work illustrates an important function for UBQLN in cell survival during nutrient starvation, which requires a newly recognized function for UBQLN in autophagosome maturation.  相似文献   

19.
Autophagy is a multistep membrane traffic pathway. In contrast to autophagosome formation, the mechanisms underlying autophagosome–lysosome fusion remain largely unknown. Here, we describe a novel autophagy regulator, inositol polyphosphate‐5‐phosphatase E (INPP5E), involved in autophagosome–lysosome fusion process. In neuronal cells, INPP5E knockdown strongly inhibited autophagy by impairing the fusion step. A fraction of INPP5E is localized to lysosomes, and its membrane anchoring and enzymatic activity are necessary for autophagy. INPP5E decreases lysosomal phosphatidylinositol 3,5‐bisphosphate (PI(3,5)P2), one of the substrates of the phosphatase, that counteracts cortactin‐mediated actin filament stabilization on lysosomes. Lysosomes require actin filaments on their surface for fusing with autophagosomes. INPP5E is one of the genes responsible for Joubert syndrome, a rare brain abnormality, and mutations found in patients with this disease caused defects in autophagy. Taken together, our data reveal a novel role of phosphoinositide on lysosomes and an association between autophagy and neuronal disease.  相似文献   

20.
Autophagic and endocytic pathways are tightly regulated membrane rearrangement processes that are crucial for homeostasis, development and disease. Autophagic cargo is delivered from autophagosomes to lysosomes for degradation through a complex process that topologically resembles endosomal maturation. Here, we report that a Beclin1-binding autophagic tumour suppressor, UVRAG, interacts with the class C Vps complex, a key component of the endosomal fusion machinery. This interaction stimulates Rab7 GTPase activity and autophagosome fusion with late endosomes/lysosomes, thereby enhancing delivery and degradation of autophagic cargo. Furthermore, the UVRAG-class-C-Vps complex accelerates endosome-endosome fusion, resulting in rapid degradation of endocytic cargo. Remarkably, autophagosome/endosome maturation mediated by the UVRAG-class-C-Vps complex is genetically separable from UVRAG-Beclin1-mediated autophagosome formation. This result indicates that UVRAG functions as a multivalent trafficking effector that regulates not only two important steps of autophagy - autophagosome formation and maturation - but also endosomal fusion, which concomitantly promotes transport of autophagic and endocytic cargo to the degradative compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号