首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have identified Socs1 as a downstream component of the Kit receptor tyrosine kinase signalling pathway. We show that the expression of Socs1 mRNA is rapidly increased in primary bone marrow-derived mast cells following exposure to Steel factor, and Socs1 inducibly binds to the Kit receptor tyrosine kinase via its Src homology 2 (SH2) domain. Previous studies have shown that Socs1 suppresses cytokine-mediated differentiation in M1 cells inhibiting Janus family kinases. In contrast, constitutive expression of Socs1 suppresses the mitogenic potential of Kit while maintaining Steel factor-dependent cell survival signals. Unlike Janus kinases, Socs1 does not inhibit the catalytic activity of the Kit tyrosine kinase. In order to define the mechanism by which Socs1-mediated suppression of Kit-dependent mitogenesis occurs, we demonstrate that Socs1 binds to the signalling proteins Grb-2 and the Rho-family guanine nucleotide exchange factors Vav. We show that Grb2 binds Socs1 via its SH3 domains to putative diproline determinants located in the N-terminus of Socs1, and Socs1 binds to the N-terminal regulatory region of Vav. These data suggest that Socs1 is an inducible switch which modulates proliferative signals in favour of cell survival signals and functions as an adaptor protein in receptor tyrosine kinase signalling pathways.  相似文献   

2.
Phosphorylation of 40S ribosomal protein S6 is regulated in part by the mitogen-activated p70 S6 kinase (p70s6k). Following the addition of IL-2 to the IL-2 dependent human cell line Kit225, or mitogenic activation of resting human T cells, a rapid phosphorylation of p70s6k was observed by immunoblotting. Rapamycin (RAP), a potent suppressor of T-cell proliferative responses, markedly inhibited the phosphorylation of p70s6k induced by IL-2 in Kit225 cells or by the mitogens added to resting T cells. Other immunosuppressants such as cyclosporin A or an FK506 analogue were without effect. Moreover, the effect of RAP was restricted to p70s6k; it did not inhibit the phosphorylation of p90rsk, another kinase which utilizes the S6 protein as a substrate. These data indicate for the first time that RAP may target the pathway leading to p70s6k phosphorylation during human T-cell proliferation.  相似文献   

3.
Perturbation of the T cell antigen-specific receptor leads to a series of signaling events that includes a rapid increase in phosphoinositide hydrolysis, intracellular Ca2+, and tyrosine phosphorylation. We have examined the function of tyrosine phosphorylation in isolation by introducing the v-src tyrosine kinase into a T cell hybridoma. T cell receptor-mediated increases in phosphoinositide hydrolysis and, in particular the generation of inositol 1,4,5-trisphosphate, were comparable between v-src+ and v-src- cells. Unexpectedly, the v-src+ cells exhibited spontaneously elevated intracellular Ca2+ and exaggerated Ca2+ increases when stimulated via the T cell receptor. The enhanced Ca2+ response was not due to tyrosine phosphorylation of the T cell receptor itself, since the phenotype was evident in T cell receptor zeta chain-/v-src+ cells as well. These results demonstrate that an active protein tyrosine kinase can markedly affect intracellular Ca2+ handling by a process independent of inositol 1,4,5-trisphosphate production and T cell receptor tyrosine phosphorylation and raise the possibility that tyrosine kinases may directly regulate T cell receptor-mediated changes in intracellular Ca2+.  相似文献   

4.
The B cell AgR regulates two signal transduction pathways: the tyrosine kinase and the phosphatidylinositol (PtdIns) pathways. Stimulation of B cells with Ag or anti-Ig antibody results in a rapid increase in tyrosine phosphorylation of multiple substrates. The AgR also mediates the activation of phospholipase C-gamma 1 (PLC-gamma 1) thus producing the second messengers, inositol trisphosphate and diacylglycerol. Although the detailed relationship between these two signaling pathways remains unclear, it has recently become apparent that PLC-gamma 1 might be a target for the AgR-associated protein tyrosine kinase. To address the question of whether tyrosine kinase activity is essential for B cell activation, we studied early biochemical changes and later cellular events induced by ligation of the purinoceptor (P2R). Ligation of ATP to its receptor on B cells has been previously shown to elicit increases in cytosolic free Ca2+ and inositol phosphate production as well as induction of c-fos mRNA expression and increased expression of IL-2 and transferrin receptors. We show here that ATP in a wide range of concentrations did not increase protein tyrosine kinase activity. In contrast with the AgR, P2R did not mediate tyrosine phosphorylation of PLC-gamma 1, thus suggesting that it may use another phosphoinositide-specific PLC that does not require phosphorylation on tyrosine residues for its activation. The results were supported by experiments with a specific tyrosine kinase inhibitor, tyrphostin AG-126. Preincubation with this inhibitor blocked AgR but not P2R-mediated inositol phosphate production, cytosolic free Ca2+ changes, and IL-2 and transferrin receptor expression. The results indicate that the PtdIns pathway may be sufficient to induce activation of B cells and that the tyrosine phosphorylation pathway is not necessary for nonantigenic B cell activation.  相似文献   

5.
Insulin receptor was co-purified from human placenta together with insulin-stimulated kinase activity that phosphorylates the insulin receptor on serine residues. By using this 'in vitro' system, the mechanism of activation of the serine kinase by insulin was explored. Peptide 1150, histone, poly(Glu-Tyr), eliminating Mn2+ (Mg2+ only), treatment at 37 degrees C (1 h), N-ethylmaleimide, phosphate, beta-glycerol phosphate and anti-phosphotyrosine antibody all inhibited insulin-receptor tyrosine kinase activity and the ability of insulin to stimulate phosphorylation of the insulin receptor on serine. Additionally, direct stimulation of the receptor tyrosine kinase by vanadate increased serine phosphorylation of the insulin receptor. Insulin-stimulated tyrosine phosphorylation preceded insulin-stimulated serine phosphorylation of the insulin receptor. The activity of the insulin-sensitive receptor serine kinase was not augmented by cyclic AMP, cyclic GMP, Ca2+, Ca2+ + calmodulin, Ca2+ + phosphatidylserine + diolein or spermine, or inhibited appreciably by heparin. Additionally, the serine kinase phosphorylated casein or phosvitin poorly and was active with Mn2+. This indicates that it is distinct from Ca2+, Ca2+/phospholipid, Ca2+/calmodulin, cyclic AMP- and cyclic GMP-dependent protein kinases, casein kinases I and II and insulin-activated ribosomal S6 kinase. Taken together, these data indicate that a novel species of serine kinase catalyses the insulin-dependent phosphorylation of the insulin receptor and that activation of this receptor serine kinase by insulin requires an active insulin-receptor tyrosine kinase.  相似文献   

6.
Treatment of adipocytes with okadaic acid (a specific inhibitor of type 1 and 2a protein phosphatases) resulted in a rapid 8-10-fold stimulation of cell extract myelin basic protein (MBP) kinase activity (t1/2 = 10 min) and kinase activity toward a synthetic peptide RRLSSLRA (S6 peptide) (t1/2 = 5 min). Insulin brought about a smaller stimulation of these two activities (t1/2 = 2.5 min). MBP kinase activity from cells treated with okadaic acid or insulin was resolved by anion exchange chromatography into two well defined peaks; S6 peptide kinase activity was less well resolved. The two partially purified MBP kinases were inactivated by the protein tyrosine phosphatase CD45 or by protein phosphatase 2a (PP-2a). In contrast, partially purified S6 peptide kinase activity was inactivated only by PP-2a or protein phosphatase 1 (PP-1). Furthermore, a 38-kDa protein which co-eluted with one peak of MBP kinase and a 42-kDa protein which co-eluted with the other peak of MBP kinase were phosphorylated on tyrosine after treatment with okadaic acid. These findings illustrate several important points concerning regulation of MBP and S6 peptide kinases. First, these protein kinases are regulated by phosphorylation, and, second, in the absence of hormonal stimuli their activities are strongly suppressed by protein phosphatases. Lastly, the increased tyrosine phosphorylation accompanying the activation of MBP kinases following okadaic acid treatment suggests a role for PP-2a in events that are mediated by tyrosine phosphorylation.  相似文献   

7.
8.
The receptor tyrosine kinase Flt3 has been shown to play a role in proliferation and survival of hematopoietic progenitor cells as well as differentiation of early B lymphoid progenitors. However, the signaling events that control growth or differentiation are not completely understood. In order to identify new signaling molecules interacting with the cytoplasmic domain of Flt3, we performed a yeast two-hybrid screen. In addition to several SH2 domain-containing proteins, we have isolated a novel Flt3 interacting zinc finger protein (Fiz1) with 11 C(2)H(2)-type zinc fingers. Fiz1 binds to the catalytic domain of Flt3 but not to the structurally related receptor tyrosine kinases Kit, Fms, and platelet-derived growth factor receptor. This association is independent of kinase activity. The interaction between Flt3 and Fiz1 detected in yeast was confirmed by in vitro and in vivo coprecipitation assays. Fiz1 mRNA is expressed in all murine cell lines and tissues tested. Anti-Fiz1 antibodies recognize a 60-kDa protein, which is localized in the nucleus as well as in the cytoplasm. Together, these results identified a novel class of interaction between a receptor tyrosine kinase and a signaling molecule which is independent of the well established SH2 domain/phosphotyrosine binding.  相似文献   

9.
Interleukin 2 (IL-2) has been shown to stimulate tyrosine phosphorylation of a number of proteins requiring only the p75 beta chain of the IL-2 receptor. Unlike the receptors for epidermal growth factor, insulin, and other growth factors, the p55-alpha and p75-beta chains of the IL-2 receptor have no tyrosine protein kinase domain suggesting that the IL-2 receptor complex activates protein kinases by a unique mechanism. The activation of tyrosine kinases by IL-2 in situ was studied and using a novel methodology has shown tyrosine kinase activity associated with the purified IL-2R complex in vitro. IL-2 stimulated the in situ tyrosine phosphorylation of 97 kDa and 58 kDa proteins which bound to poly(Glu,Tyr)4:1, a substrate for tyrosine protein kinases, suggesting these proteins had characteristics found in almost all tyrosine kinases. IL-2 was found to stimulate tyrosine protein kinase activity in receptor extracts partially purified from human T lymphocytes and the YT cell line. Biotinylated IL-2 was used to precipitate the high-affinity-receptor complex and phosphoproteins associated with it. The data indicated that the 97-kDa and 58-kDa phosphotyrosyl proteins were tightly associated with the IL-2 receptor complex. These proteins were phosphorylated on tyrosine residues by IL-2 stimulation of intact cells and ligand treatment of in vitro receptor extracts. Furthermore, the 97-kDa and 58-kDa proteins were found in streptavidin-agarose/biotinylated IL-2 purified receptor preparations and showed high affinity for tyrosine kinase substrate support matrixes. The experiments suggest that these two proteins are potential candidates for tyrosine kinases involved in the IL-2R complex signal transduction process.  相似文献   

10.
11.
The functional regulation of the human bradykinin B2 receptor expressed in sf21 cells was studied. Human bradykinin B2 receptors were immunodetected as a band of 75-80 kDa in membranes from recombinant baculovirus-infected cells and visualized at the plasma membrane, by confocal microscopy, using an antibody against an epitope from its second extracellular loop. B2 receptors, detected in membranes by [(3)H-bradykinin] binding, showed a Kd of 0.66 nmol/L and an expression level of 2.57 pmol/mg of protein at 54 h postinfection. In these cells, bradykinin induced a transient increase of intracellular calcium ([Ca(2+)](i)) in fura 2-AM loaded sf21 cells, and promoted [(35)S]-GTP(gamma)S binding to membranes. The effects of bradykinin were dose dependent (with an EC(50) of 50 nmol/L for calcium mobilization) and were inhibited by N-alpha-adamantaneacetyl-D-Arg-[Hyp(3),Thi(5,8),D-phe(7)]-Bk, a specific B2 receptor antagonist. When the B2 antagonist was applied at the top of the calcium transient, it accelerated the decline of the peak, suggesting that calcium mobilization at this point was still influenced by receptor occupation. No calcium mobilization was elicited by 1 micromol/L (Des-Arg(9))-Bk, a B1 receptor agonist that did not inhibit the subsequent action of 100 nmol/L bradykinin. No effect of bradykinin was detected in uninfected cells or cells infected with the wild-type baculovirus. Bradykinin-induced [Ca(2+)](i) mobilization was increased by genistein and tyrphostin A51. These tyrosine kinase inhibitors did not modify basal levels of [Ca(2+)](i). Homologous desensitization of the B2 receptor was observed after repeated applications of bradykinin, which resulted in attenuated changes in intracellular calcium. In addition, genistein promoted an increased response to a third exposure to the agonist when applied after washing the cells that had been previously challenged with two increasing doses of bradykinin. Genistein did not affect the calcium mobilization induced by activation of the endogenous octopamine G protein-coupled receptor or by thapsigargin. The B2 receptor, detected by confocal microscopy in unpermeabilized cells, remained constant at the surface of cells stimulated with bradykinin for 10 min, in the presence or absence of genistein. Agonist-promoted phosphorylation of the B2 receptor was markedly accentuated by genistein treatment. Phosphoaminoacid analysis revealed the presence of phosphoserine and traces of phosphothreonine, but not phosphotyrosine, suggesting that the putative tyrosine kinase(s), activated by bradykinin, could act in a step previous to receptor phosphorylation. Interestingly, genistein prevented agonist-induced G protein uncoupling from B2 receptors, determined by in vitro bradykinin-stimulated [(35)S]-GTP(gamma)S binding, in membranes from bradykinin pretreated cells. Our results suggest that tyrosine kinase(s) regulate the activity of the human B2 receptor in sf21 cells by affecting its coupling to G proteins and its phosphorylation.  相似文献   

12.
13.
Three biologically active monoclonal antibodies against the human epidermal growth factor (EGF) receptor (2E9, 2D11 and 2G5) have been used to analyse the interrelationship between various cellular responses to EGF. Antibody 2E9 (IgG1) is directed against the protein core of the receptor, close to or at the EGF binding site, while 2D11 (IgG3) and 2G5 (IgG2a) recognize blood-group A-related carbohydrate determinants of the receptor. These antibodies have EGF-like effects in that they can activate the receptor tyrosine kinase both in vitro and in vivo. Cross-linking of the receptor-bound antibodies by a second antibody mimics EGF in inducing a rapid aggregation of receptors on the cell surface. However, all three antibodies fail to mimic EGF in raising cytoplasmic pH and free Ca2+ and do not stimulate DNA synthesis in quiescent fibroblasts, even after external cross-linking of the occupied receptors. It is concluded that EGF-R tyrosine kinase activity as well as substrate specificity can be modulated by ligands other than EGF, even if they bind to sites distinct from the EGF binding domain; activation of the receptor tyrosine kinase, receptor clustering and induction of the ionic signals are causally unrelated events; and tyrosine kinase activation and receptor cross-linking are not sufficient for stimulation of DNA synthesis.  相似文献   

14.
The c-kit protooncogene encodes a receptor tyrosine kinase that is known to play a critical role in hemopoiesis and is essential for mast cell growth, differentiation, and cytokine production. Studies have shown that the Th2 cytokine IL-4 can down-regulate Kit expression on human and murine mast cells, but the mechanism of this down-regulation has remained unresolved. Using mouse bone marrow-derived mast cells, we demonstrate that IL-4-mediated Kit down-regulation requires STAT6 expression and phosphotidylinositide-3'-kinase activation. We also find that the Th2 cytokine IL-10 potently down-regulates Kit expression. IL-4 enhances IL-10-mediated inhibition in a manner that is STAT6 independent and phosphotidylinositide-3'-kinase dependent. Both IL-4- and IL-10-mediated Kit down-regulation were coupled with little or no change in c-kit mRNA levels, no significant change in Kit protein stability, but decreased total Kit protein expression. Inhibition of Kit expression by IL-4 and IL-10 resulted in a loss of Kit-mediated signaling, as evidenced by reduced IL-13 and TNF-alpha mRNA induction after stem cell factor stimulation. These data offer a role for STAT6 and phosphotidylinositide-3'-kinase in IL-4-mediated Kit down-regulation, coupled with the novel observation that IL-10 is a potent inhibitor of Kit expression and function. Regulating Kit expression and signaling may be essential to controlling mast cell-mediated inflammatory responses.  相似文献   

15.
Sphingosine 1-phosphate (S1P), a ligand for endothelial differentiation gene family proteins, is one of the most potent signal mediators released from activated platelets. Here, we report that S1P induces membrane ruffling of human umbilical vein endothelial cells (HUVECs) via the vascular endothelial growth factor receptor (VEGFR), Src family tyrosine kinase(s), and the CrkII adaptor protein. S1P induced prominent phosphorylation of CrkII in HUVECs, indicating that CrkII was involved in the S1P-induced signaling pathway. S1P-induced CrkII phosphorylation was blocked by pertussis toxin and overexpression of the carboxyl terminus of beta-adrenergic receptor kinase, indicating that the betagamma subunit of G(i) was required for the phosphorylation. Notably, the S1P-induced CrkII phosphorylation was also abolished by inhibitors of VEGFR or Src family tyrosine kinases. By using Picchu, a real time monitoring protein for CrkII phosphorylation, we found that S1P induced rapid CrkII phosphorylation at membrane ruffles. Finally, we observed that expression of a dominant negative mutant of CrkII inhibited the S1P-induced membrane ruffling and cell migration. These results delineated a novel S1P signaling pathway that involves sequential activation of G(i)-coupled receptor(s), VEGFR, Src family tyrosine kinase(s), and the CrkII adaptor protein, and which is responsible for both the induction of membrane ruffling and the increase in cell motility.  相似文献   

16.
17.
We studied the potential roles for endogenous interleukin-1beta (IL-1beta) and for several signaling pathways in the spontaneous induction in vitro of inducible nitric oxide synthase (iNOS) in endothelium-denuded rat aorta rings. Added IL-1beta augmented, whereas the IL-1beta receptor antagonist IL-1ra blocked, spontaneous iNOS induction. Furthermore, increases in IL-1beta mRNA preceded those of iNOS mRNA. Mitogen-activated protein kinase kinase and phosphatidyl inositol 3' kinase inhibition did not block iNOS induction, whereas nuclear factor kappaB inhibition did. The sarcoma virus tyrosine kinase (Src) family-selective inhibitor 4-amino-5(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP1) blocked the upregulation of IL-1beta mRNA and the subsequent induction of iNOS but not the induction of iNOS stimulated by exogenously added IL-1beta. In contrast, the non-Src inhibitors TP 47/AG 213 and genistein and the tyrosine phosphatase inhibitor vanadate did not affect the spontaneous upregulation of IL-1beta mRNA but blocked both the IL-1beta-mediated and spontaneous induction of iNOS. We conclude that 1) the upregulation of tissue IL-1beta, via a signaling pathway involving a Src family kinase, plays a key role in rat vascular iNOS induction and 2) non-Src tyrosine kinases play roles downstream from IL-1beta for iNOS induction.  相似文献   

18.
Embryonal carcinoma (EC) cells are the malignant stem cells of teratocarcinoma and have the capacity to proliferate in the absence of serum growth factors. As yet no receptor protein tyrosine kinases have been identified on undifferentiated EC cells and as a consequence tyrosine kinase signaling pathways could not be studied in these cells. We have used stably transfected P19 embryonal carcinoma cells expressing a well-characterized receptor protein tyrosine kinase, the human epidermal growth factor receptor (hEGF-R) to study protein tyrosine kinase signaling mechanisms in undifferentiated EC cells. Here we report that the ectopically expressed hEGF-R contains EGF-inducible autophosphorylation activity and is rapidly internalized and degraded upon ligand binding. In addition, the exogenous hEGF-R confers EGF-responsiveness to these cells in that inositol phosphate formation and cytoplasmic-free Ca2+ concentration are enhanced in response to EGF. Furthermore, the Na+/H+ exchanger is activated in response to EGF, leading to a sustained rise in intracellular pH. Our results show that undifferentiated P19 EC cells contain the necessary components of protein tyrosine kinase signal transduction machinery.  相似文献   

19.
Interleukin-7 (IL-7) receptor signaling begins with activation of the Janus tyrosine kinases Jak1 and Jak3, which are associated with the receptor complex. To identify potential targets of these kinases, we examined Pyk2 (a member of the focal adhesion kinase family) using an IL-7-dependent murine thymocyte line, D1. We demonstrate that stimulation of D1 (or normal pro-T) cells by IL-7 rapidly increased tyrosine phosphorylation and enzymatic activity of Pyk2, with kinetics slightly lagging that of Jak1 and Jak3 phosphorylation. Conversely, IL-7 withdrawal resulted in a marked decrease of Pyk2 phosphorylation. Pyk2 was found to be physically associated with Jak1 prior to IL-7 stimulation and to increase its association with IL-7Ralpha chain following IL-7 stimulation. Pyk2 appeared to be involved in cell survival, because antisense Pyk2 accelerated the cell death process. Activation of Pyk2 via the muscarinic and nicotinic receptors using carbachol or via intracellular Ca(2+) rise using ionomycin/phorbol myristate acetate promoted survival in the absence of IL-7. These data support a role for Pyk2 in coupling Jak signaling to the trophic response.  相似文献   

20.
The lysophospholipid, sphingosine 1-phosphate (S1P), regulates a multitude of cellular functions by activating specific G protein-coupled receptors (GPCRs) (S1P(1-5), plus three newly identified S1P receptors). The G(i)-coupled S1P(1) receptor inhibits adenylyl cyclase, stimulates mitogen-activated protein kinases (MAP kinases) and cell migration, and is required for blood vessel maturation. Here, we report that S1P(1) inhibits Ca(2+) signalling in a number of cell types. In HEK-293 cells, which endogenously express S1P(1-3), overexpression of S1P(1) reduced intracellular free Ca(2+) concentration ([Ca(2+)](i)) increases induced by various receptor agonists as well as thapsigargin. The inhibitory Ca(2+) signalling of S1P(1) was blocked by pertussis toxin (PTX) and the protein kinase C (PKC) inhibitor, G?6976, and imitated by phorbol ester and overexpression of classical PKC isoforms. Activation of S1P(1) stably expressed in RH7777 cells, which endogenously do not express S1P receptors, also inhibited Ca(2+) signalling, without mediating Ca(2+) mobilization on its own. It is concluded that the widely expressed S1P receptor S1P(1) inhibits Ca(2+) signalling, most likely via G(i) proteins and classical PKC isoforms. Co-expression of S1P(1) with S1P(3), but not S1P(2), reversed the inhibitory effect of S1P(1), furthermore suggesting a specific interplay of S1P receptor subtypes usually found within a single cell type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号