首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To elucidate the inheritance of deafness in Dalmatian dogs, 825 dogs in 111 litters were evaluated for abnormalities in hearing through the brainstem auditory evoked response (BAER). Recorded along with their quality of hearing (normal, unilaterally deaf, or bilaterally deaf) were the sex, coat color, eye color and the presence or absence of a color patch. The analysis considered deafness an ordered categorical trait in a threshold model. The underlying, unobservable continuous variate of the threshold model was assumed to be a linear function of sex of dog, coat color (black or liver and white), color patch (presence or absence), eye color, the deafness phenotype of the parents and a random family effect. Twenty-six percent of dogs were deaf in at least one ear. Eye color, color patch, sex and the hearing status of the parents were all significant contributions to deafness. The heritability of deafness, on the continuous unobservable scale, was 0.21. This value was computed after correction for eye color, color patch, parental hearing status and sex, implying that significant genetic variation exists beyond the contribution of several single loci. Received: 15 February 1996 / Accepted: 11 June 1996  相似文献   

2.
The causative mutation in a gene related to hearing loss in Dalmatians has been elusive. Because of its role in melanocyte migration and differentiation as integral component of the inner ear, we hypothesized that the canine PAX3 (paired box homeotic gene 3) gene could be a candidate for Dalmatian deafness. Therefore, we isolated the canine PAX3 gene and searched for causative mutations within the coding region of important regulatory domains of PAX3. However, no mutations were identified when comparing the DNA sequences of healthy and affected dogs. These results were confirmed by a two-point linkage analysis in 203 Dalmatians transmitting deafness. Our data clearly show that the canine PAX3 gene can be excluded as candidate for Dalmatian deafness.  相似文献   

3.
Allantoin is the end product of purine catabolism in all mammals except humans, great apes, and one breed of dog, the Dalmatian. Humans and Dalmatian dogs produce uric acid during purine degradation, which leads to elevated levels of uric acid in blood and urine and can result in significant diseases in both species. The defect in Dalmatians results from inefficient transport of uric acid in both the liver and renal proximal tubules. Hyperuricosuria and hyperuricemia (huu) is a simple autosomal recessive trait for which all Dalmatian dogs are homozygous. Therefore, in order to map the locus, an interbreed backcross was used. Linkage mapping localized the huu trait to CFA03, which excluded the obvious urate transporter 1 gene, SLC22A12. Positional cloning placed the locus in a minimal interval of 2.5 Mb with a LOD score of 17.45. A critical interval of 333 kb containing only four genes was homozygous in all Dalmatians. Sequence and expression analyses of the SLC2A9 gene indicated three possible mutations, a missense mutation (G616T;C188F) and two promoter mutations that together appear to reduce the expression levels of one of the isoforms. The missense mutation is associated with hyperuricosuria in the Dalmatian, while the promoter SNPs occur in other unaffected breeds of dog. Verification of the causative nature of these changes was obtained when hyperuricosuric dogs from several other breeds were found to possess the same combination of mutations as found in the Dalmatian. The Dalmatian dog model of hyperuricosuria and hyperuricemia underscores the importance of SLC2A9 for uric acid transport in mammals.  相似文献   

4.
A genome-wide association study (GWAS) was performed for 235 Dalmatian dogs using the canine Illumina high density bead chip to identify quantitative trait loci (QTL) associated with canine congenital sensorineural deafness (CCSD). Data analysis was performed for all Dalmatian dogs and in addition, separately for brown-eyed and blue-eyed dogs because of the significant influence of eye colour on CCSD in Dalmatian dogs. Mixed linear model analysis (MLM) revealed seven QTL with experiment-wide significant associations (-log10P>5.0) for CCSD in all Dalmatian dogs. Six QTL with experiment-wide significant associations for CCSD were found in brown-eyed Dalmatian dogs and in blue-eyed Dalmatian dogs, four experiment-wide significant QTL were detected. The experiment-wide CCSD-associated SNPs explained 82% of the phenotypic variance of CCSD. Five CCSD-loci on dog chromosomes (CFA) 6, 14, 27, 29 and 31 were in close vicinity of genes shown as causative for hearing loss in human and/or mouse.  相似文献   

5.
Subscapular skinfold, elbow breadth and upper arm indicators of nutritional status were studied in the population of Dalmatia in Croatia. Age- and sex-specific percentiles were obtained from 4373 subjects, 18 to 74 years of age, and compared to the U.S. NHANES I and II reference data. There were significant differences between these data sets in all studied variables. The results complement those reported previously for BMI and triceps skinfold and indicate that high prevalence of overweight in Dalmatians largely reflects their muscularity and skeletal robustness rather than excess body fatness. The findings suggest that the U.S. upper percentiles of BMI and skinfolds are inadequate for the assessment of excess body fatness in Dalmatian population. The obtained population-specific percentile distributions should be used provisionally as the reference data for group comparisons in the Dalmatian region.  相似文献   

6.

Background

Congenital hereditary sensorineural deafness (CHSD) occurs in many dog breeds, including Australian Cattle Dogs. In some breeds, CHSD is associated with a lack of cochlear melanocytes in the stria vascularis, certain coat characteristics, and potentially, abnormalities in neuroepithelial pigment production. This study investigates phenotypic markers for CHSD in 899 Australian Cattle Dogs.

Results

Auditory function was tested in 899 Australian Cattle Dogs in family groups using brainstem auditory evoked response testing. Coat colour and patterns, facial and body markings, gender and parental hearing status were recorded. Deafness prevalence among all 899 dogs was 10.8% with 7.5% unilaterally deaf, and 3.3% bilaterally deaf, and amongst pups from completely tested litters (n = 696) was 11.1%, with 7.5% unilaterally deaf, and 3.6% bilaterally deaf. Univariable and multivariable analyses revealed a negative association between deafness and bilateral facial masks (odds ratio 0.2; P ?? 0.001). Using multivariable logistic animal modelling, the risk of deafness was lower in dogs with pigmented body spots (odds ratio 0.4; P = 0.050). No significant associations were found between deafness and coat colour. Within unilaterally deaf dogs with unilateral facial masks, no association was observed between the side of deafness and side of mask. The side of unilateral deafness was not significantly clustered amongst unilaterally deaf dogs from the same litter. Females were at increased risk of deafness (odds ratio from a logistic animal model 1.9; P = 0.034) after adjusting for any confounding by mask type and pigmented body spots.

Conclusions

Australian Cattle Dogs suffer from CHSD, and this disease is more common in dogs with mask-free faces, and in those without pigmented body patches. In unilaterally deaf dogs with unilateral masks, the lack of observed association between side of deafness and side of mask suggests that if CHSD is due to defects in molecular pigment pathways, the molecular control of embryonic melanoblast migration from ectoderm to skin differs from control of migration from ectoderm to cochlea. In Australian Cattle Dogs, CHSD may be more common in females.  相似文献   

7.
The A1555G mutation in the mitochondrial small ribosomal RNA gene (12S rRNA) has been associated with aminoglycoside-induced, nonsyndromic hearing loss. However, the clinical phenotype of A1555G carriers is extremely variable. In the present study, we have performed an audiological evaluation of a group of deaf patients and hearing carriers of mutation A1555G with the aim to assess the prevalence of the mutation and determine the associated cochlear alterations. Fifty-four patients affected of nonsyndromic hearing loss were screened for the presence of the A1555G mitochondrial mutation. Nine of the familial cases (21%) carried the A1555G mutation, whereas the mutation was not found in any of the sporadic cases. The positive cases and some of their family members underwent a clinical study consisting in a clinical evaluation and audiological testing. The phenotype of A1555G patients varied in age of onset and severity of hearing loss, ranging from profound deafness to completely normal hearing. The audiometric alterations showed bilateral hearing loss, being more severe at high frequencies. Otoacoustic emissions were absent in deaf A1555G carriers, and auditory brainstem response indicated a prolonged Wave I, suggesting a cochlear dysfunction without any effect of the auditory nerve. Moreover, all hearing carriers of A1555G also presented alterations in cochlear physiology. In conclusion, the A1555G mitochondrial mutation causes a cochlear form of deafness, characterized by a more severe loss of hearing at high frequencies. Although the expression of the mutation is variable, cochlear alterations are present in all carriers of mutation A1555G.  相似文献   

8.
The auditory apparatus of two strains of mices with normal audition is compared to that of two substrains with genetic auditory impairment. Audiometry by auditory evoked potentials at the inferior collicular level indicates complete deafness for one substrain and a 40-48 dB S.P.L. hearing loss at all frequencies for the other. Scanning and transmission electron microscopy demonstrate hair impairment of the external hair cells and degeneration of the chondriosome for the two deaf substrains.  相似文献   

9.

Background

Congenital sensorineural deafness is an inherited condition found in many dog breeds, including Australian Stumpy-tail Cattle Dogs (ASCD). This deafness is evident in young pups and may affect one ear (unilateral) or both ears (bilateral). The genetic locus/loci involved is unknown for all dog breeds. The aims of this study were to determine incidence, inheritance mechanism, and possible association of congenital sensorineural deafness with coat colour in ASCD and to identify the genetic locus underpinning this disease.

Methodology/Principal Findings

A total of 315 ASCD were tested for sensorineural deafness using the brain stem auditory evoked response (BAER) test. Disease penetrance was estimated directly, using the ratio of unilaterally to bilaterally deaf dogs, and segregation analysis was performed using Mendel. A complete genome screen was undertaken using 325 microsatellites spread throughout the genome, on a pedigree of 50 BAER tested ASCD in which deafness was segregating. Fifty-six dogs (17.8%) were deaf, with 17 bilaterally and 39 unilaterally deaf. Unilaterally deaf dogs showed no significant left/right bias (p = 0.19) and no significant difference was observed in frequencies between the sexes (p = 0.18). Penetrance of deafness was estimated as 0.72. Testing the association of red/blue coat colour and deafness without accounting for pedigree structure showed that red dogs were 1.8 times more likely to be deaf (p = 0.045). The within family association between red/blue coat colour and deafness was strongly significant (p = 0.00036), with red coat colour segregating more frequently with deafness (COR = 0.48). The relationship between deafness and coat speckling approached significance (p = 0.07), with the lack of statistical significance possibly due to only four families co-segregating for both deafness and speckling. The deafness phenotype was mapped to CFA10 (maximum linkage peak on CFA10 −log10 p-value = 3.64), as was both coat colour and speckling. Fine mapping was then performed on 45 of these 50 dogs and a further 48 dogs (n = 93). Sequencing candidate gene Sox10 in 6 hearing ASCD, 2 unilaterally deaf ASCD and 2 bilaterally deaf ASCD did not reveal any disease-associated mutations.

Conclusions

Deafness in ASCD is an incompletely penetrant autosomal recessive inherited disease that maps to CFA10.  相似文献   

10.
Autosomal recessive deafness type 1A (DFNB1A) caused by mutations in the GJB2 gene (Cx26) is the main cause of nonsyndromic hearing impairment in many populations worldwide. It is considered that widespread prevalence of DFNB1A can be due to the long tradition of intermarriages between deaf people (assortative marriages) combined with their increased social adaptation and genetic fitness after widespread introduction of sign language. For the first time, the data on mating structure and reproduction of deaf people living in Yakutia (Eastern Siberia, Russia) are presented in comparison with contribution of the GJB2 gene mutations to the etiology of hearing impairment. The relative fertility of deaf people compared to their hearing siblings is 0.78 (mean number of children 1.76 ± 0.10 and 2.24 ± 0.09 to deaf and their hearing siblings, respectively, p = 0.0018). The rate of assortative marriages among deaf people is 77.1% (81 of 105 marriages). Biallelic mutations in the GJB2 gene were found in 42.2% (43 of 102) of examined deaf people, which corresponded to diagnosis DFNB1A for these patients. A comparison of deaf marital partners by GJB2 status revealed a proportion of noncomplementary marriages (24%) in which hearing loss in both partners was caused by the presence of biallelic GJB2 gene mutations resulting in the birth of only deaf children in such couples. Thus, the set of obtained data including a relatively high genetic fitness (expressed as relative fertility) of deaf people in Yakutia in combination with a high rate of assortative marriages among them and high incidence of DFNB1A indicates a possible weakening of selection against such trait as “deafness” and a possible increase in the frequency of GJB2 mutant alleles in subsequent generations.  相似文献   

11.
Psychophysics and brain imaging studies in deaf patients have revealed a functional crossmodal reorganization that affects the remaining sensory modalities. Similarly, the congenital deaf cat (CDC) shows supra-normal visual skills that are supported by specific auditory fields (DZ-dorsal zone and P-posterior auditory cortex) but not the primary auditory cortex (A1). To assess the functional reorganization observed in deafness we analyzed the connectivity pattern of the auditory cortex by means of injections of anatomical tracers in DZ and A1 in both congenital deaf and normally hearing cats. A quantitative analysis of the distribution of the projecting neurons revealed the presence of non-auditory inputs to both A1 and DZ of the CDC which were not observed in the hearing cats. Firstly, some visual (areas 19/20) and somatosensory (SIV) areas were projecting toward DZ of the CDC but not in the control. Secondly, A1 of the deaf cat received a weak projection from the visual lateral posterior nuclei (LP). Most of these abnormal projections to A1 and DZ represent only a small fraction of the normal inputs to these areas. In addition, most of the afferents to DZ and A1 appeared normal in terms of areal specificity and strength of projection, with preserved but smeared nucleotopic gradient of A1 in CDCs. In conclusion, while the abnormal projections revealed in the CDC can participate in the crossmodal compensatory mechanisms, the observation of a limited reorganization of the connectivity pattern of the CDC implies that functional reorganization in congenital deafness is further supported also by normal cortico-cortical connectivity.  相似文献   

12.
The altered sensory experience of profound early onset deafness provokes sometimes large scale neural reorganisations. In particular, auditory-visual cross-modal plasticity occurs, wherein redundant auditory cortex becomes recruited to vision. However, the effect of human deafness on neural structures involved in visual processing prior to the visual cortex has never been investigated, either in humans or animals. We investigated neural changes at the retina and optic nerve head in profoundly deaf (N = 14) and hearing (N = 15) adults using Optical Coherence Tomography (OCT), an in-vivo light interference method of quantifying retinal micro-structure. We compared retinal changes with behavioural results from the same deaf and hearing adults, measuring sensitivity in the peripheral visual field using Goldmann perimetry. Deaf adults had significantly larger neural rim areas, within the optic nerve head in comparison to hearing controls suggesting greater retinal ganglion cell number. Deaf adults also demonstrated significantly larger visual field areas (indicating greater peripheral sensitivity) than controls. Furthermore, neural rim area was significantly correlated with visual field area in both deaf and hearing adults. Deaf adults also showed a significantly different pattern of retinal nerve fibre layer (RNFL) distribution compared to controls. Significant correlations between the depth of the RNFL at the inferior-nasal peripapillary retina and the corresponding far temporal and superior temporal visual field areas (sensitivity) were found. Our results show that cross-modal plasticity after early onset deafness may not be limited to the sensory cortices, noting specific retinal adaptations in early onset deaf adults which are significantly correlated with peripheral vision sensitivity.  相似文献   

13.
Dalmatians, like humans, excrete uric acid in their urine. All other dogs and most mammals excrete allantoin, a water-soluble compound that is further along the purine degradation pathway. Excretion of uric acid at high concentrations (hyperuricosuria) predisposes Dalmatians to the formation of urinary urate calculi. Hyperuricosuria (huu) is found in all Dalmatians tested and is inherited as an autosomal recessive trait. A genome scan and linkage analysis performed on a Dalmatian × Pointer interbreed backcross detected a single linked marker, REN153P03, located on CFA03. Haplotype analysis of the region around this marker defined a 3.3-Mb interval flanked by single recombination events. This interval, which contains the huu mutation, is estimated to include 24 genes. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users.  相似文献   

14.
Individuals with profound deafness rely critically on vision to interact with their environment. Improvement of visual performance as a consequence of auditory deprivation is assumed to result from cross-modal changes occurring in late stages of visual processing. Here we measured reaction times and event-related potentials (ERPs) in profoundly deaf adults and hearing controls during a speeded visual detection task, to assess to what extent the enhanced reactivity of deaf individuals could reflect plastic changes in the early cortical processing of the stimulus. We found that deaf subjects were faster than hearing controls at detecting the visual targets, regardless of their location in the visual field (peripheral or peri-foveal). This behavioural facilitation was associated with ERP changes starting from the first detectable response in the striate cortex (C1 component) at about 80 ms after stimulus onset, and in the P1 complex (100-150 ms). In addition, we found that P1 peak amplitudes predicted the response times in deaf subjects, whereas in hearing individuals visual reactivity and ERP amplitudes correlated only at later stages of processing. These findings show that long-term auditory deprivation can profoundly alter visual processing from the earliest cortical stages. Furthermore, our results provide the first evidence of a co-variation between modified brain activity (cortical plasticity) and behavioural enhancement in this sensory-deprived population.  相似文献   

15.
Recent advances within molecular genetics to identify the genes for deafness mean that it is now possible for genetic-counseling services to offer genetic testing for deafness to certain families. The purpose of this study is to document the attitudes of deaf adults toward genetic testing for deafness. A structured, self-completion questionnaire was given to delegates at an international conference on the "Deaf Nation," held at the University of Central Lancashire in 1997. The conference was aimed at well-educated people, with an emphasis on Deaf culture issues. Eighty-seven deaf delegates from the United Kingdom returned completed questionnaires. The questionnaire had been designed to quantitatively assess attitudes toward genetics, interest in prenatal diagnosis (PND) for deafness, and preference for having deaf or hearing children. The results from this study provide evidence of a predominantly negative attitude toward genetics and its impact on deaf people, in a population for whom genetic-counseling services are relevant. Fifty-five percent of the sample thought that genetic testing would do more harm than good, 46% thought that its potential use devalued deaf people, and 49% were concerned about new discoveries in genetics. When asked about testing in pregnancy, 16% of participants said that they would consider having PND, and, of these, 29% said that they would prefer to have deaf children. Geneticists need to appreciate that some deaf persons may prefer to have deaf children and may consider the use of genetic technology to achieve this. Any genetic-counseling service set up for families with deafness can only be effective and appropriate if clinicians and counselors take into consideration the beliefs and values of the deaf community at large.  相似文献   

16.

Background

Early deafness leads to enhanced attention in the visual periphery. Yet, whether this enhancement confers advantages in everyday life remains unknown, as deaf individuals have been shown to be more distracted by irrelevant information in the periphery than their hearing peers. Here, we show that, in a complex attentional task, a performance advantage results for deaf individuals.

Methodology/Principal Findings

We employed the Useful Field of View (UFOV) which requires central target identification concurrent with peripheral target localization in the presence of distractors – a divided, selective attention task. First, the comparison of deaf and hearing adults with or without sign language skills establishes that deafness and not sign language use drives UFOV enhancement. Second, UFOV performance was enhanced in deaf children, but only after 11 years of age.

Conclusions/Significance

This work demonstrates that, following early auditory deprivation, visual attention resources toward the periphery slowly get augmented to eventually result in a clear behavioral advantage by pre-adolescence on a selective visual attention task.  相似文献   

17.
About half of congenitally deaf children that have a recessively inherited sensorineural deafness are born from normal-hearing parents and have no risk factor for hearing loss. Mutation 35delG in the connexin-26 gene is in European populations the basis for around half of all recessively inherited prelingual sensorineural deafness. The aim of our study was to assess the efficacy and utility of the 35delG mutation of the connexin-26 gene analysis for neonates at familial risk, from DNA isolated from Guthrie newborn screening cards. Newborns who had consanguineous parent and/or a familial history of deafness underwent connexin-26 gene analysis from DNA isolated from Guthrie cards and two hearing screening tests (transient evoked otoacoustic emissions, and auditory brainstem recordings). 24 newborns were includes in this pilot study; one of them is homozygous for the 35delG mutation and had abnormal hearing screening tests; all the others newborns had normal connexin gene and at least one normal hearing screening test. Detection on connexin-26 gene mutation is feasible in selected at-risk newborns on one additional blood spot on Guthrie card.  相似文献   

18.
It is well established that manipulation of the sensory environment can significantly alter central auditory system development. For example, congenitally deaf white cats exhibit synaptic alterations in the cochlear nucleus distinct from age-matched, normal hearing controls. The large, axosomatic endings of auditory nerve fibers, called endbulbs of Held, display reduced size and branching, loss of synaptic vesicles, and a hypertrophy of the associated postsynaptic densities on the target spherical bushy cells. Such alterations, however, could arise from the cat's genetic syndrome rather than from deafness. In order to examine further the role of hearing on synapse development, we have studied endbulbs of Held in the shaker-2 (sh2) mouse. These mice carry a point mutation on chromosome 11, affecting myosin 15 and producing abnormally short stereocilia in hair cells of the inner ear. The homozygous mutant mice are born deaf and develop perpetual circling behavior, although receptor cells and primary neurons remain intact at least for the initial 100 days of postnatal life. Endbulbs of Held in 7-month old, deaf sh2 mice exhibited fewer synaptic vesicles in the presynaptic ending, the loss of intercellular cisternae, and a hypertrophy of associated postsynaptic densities. On average, postsynaptic density area for sh2 endbulbs was 0.23 ± 0.19 μm2 compared to 0.07 ± 0.04 μm2 (p < 0.001) for age-matched, hearing littermates. These changes at the endbulb synapse in sh2 mice resemble those of the congenitally deaf white cat and are consistent with the idea that they represent a generalized response to deafness.  相似文献   

19.

Background  

The distinctive coat pattern of a Dalmatian is the result of the interaction of several loci. While the encoded function of these genes is not fully understood, it is known the Piebald, Ticking, and Flecking loci interact to produce the Dalmatian's classic pigmented spots on a white background. The color of the pigmented spots in purebred Dalmatians can either be black or liver, but the locus responsible for color determination is unknown. Studies have been conducted to determine the underlying genes involved in coat color determination in the dog, e.g., in the Labrador Retriever, but none to date have addressed black versus liver in the Dalmatian.  相似文献   

20.
Auditory rehabilitation depends of the cause and the severity of the hearing loss (or deafness). Hearing losses dues to middle ear pathologies can beneficiate of medical or surgical treatments, by ossicular prostheses, if it is necessary to restore the function of the ossicles chain. In the sensorineural hearing losses, with inner ear pathology, the use of auditory aid is immediately considered. In the cases for which they are insufficient because of severity of the hearing loss or not suitable because of local non-tolerance, it is possible to use middle ear implant or cochlear implant. The indications of the auditory brainstern implants remain at this day limited to the total bilateral hearing losses due to a complete destruction of cochleae and auditory nerves. These therapeutic orientations are selected after a multidisciplinary evaluation of the deaf person, evaluation that allows the characterization of the hearing loss and its repercussion. In all the cases, the restoration of a bilateral hearing has to be done if possible, making an improvement of the speech comprehension, mainly in the noisy situations, as well as the localization of the sound sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号