首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The Lactococcus lactis subsp. lactis strains isolated from dairy products are auxotrophs for branched-chain amino acids (leucine, isoleucine, and valine), while most strains isolated from nondairy media are prototrophs. We have cloned and sequenced the leu genes from one auxotroph, IL1403. The sequence is 99% homologous to that of the prototroph NCDO2118, which was determined previously. Two nonsense mutations and two small deletions were found in the auxotroph sequence, which might explain the branched-chain amino acid auxotrophy. Nevertheless, the leu genes from the auxotroph appear to be transcribed and regulated similarly to those from the prototroph.  相似文献   

4.
Summary WhenTrichophyton rubrum is grown in a minimal medium containing glucose, the carbon skeleton of fungal phenylalanine and tyrosine is derived from the glucose carbon. Tracer experiments with variously labeled glucose-C14 indicate that phenylalanine synthesis is linked to glycolysis, but suggest that the pentose phosphate pathway is not involved. These findings suggest that aromatic amino acid biosynthesis may not be linked to the shikimic acid pathway inT. rubrum.  相似文献   

5.
Enzymes that catalyze the condensation of acetyl coenzyme A and 2-oxo acids are likely to be important in two distinct metabolic pathways in Arabidopsis. These are the synthesis of isopropylmalate, an intermediate of Leu biosynthesis in primary metabolism, and the synthesis of methylthioalkylmalates, intermediates of Met elongation in the synthesis of aliphatic glucosinolates (GSLs), in secondary metabolism. Four Arabidopsis genes in the ecotype Columbia potentially encode proteins that could catalyze these reactions. MAM1 and MAML are adjacent genes on chromosome 5 at the Gsl-elong locus, while MAML-3 and MAML-4 are at opposite ends of chr 1. The isopropylmalate synthase activity of each member of the MAM-like gene family was investigated by heterologous expression in an isopropylmalate synthase-null Escherichia coli mutant. Only the expression of MAML-3 restored the ability of the mutant to grow in the absence of Leu. A MAML knockout line (KO) lacked long-chain aliphatic GSLs, which were restored when the KO was transformed with a functional MAML gene. Variation in expression of MAML did not alter the total levels of Met-derived GSLs, but just the ratio of chain lengths. MAML overexpression in Columbia led to an increase in long-chain GSLs, and an increase in 3C GSLs. Moreover, plants overexpressing MAML contained at least two novel amino acids. One of these was positively identified via MS/MS as homo-Leu, while the other, with identical mass and fragmentation patterns, was likely to be homo-Ile. A MAML-4 KO did not exhibit any changes in GSL profile, but had perturbed soluble amino acid content.  相似文献   

6.
Summary Trichophyton rubrum was assayed for shikimic, quinic, and protocatechuic acids with biological and chemical techniques. Since none of these metabolites were detected, we conclude that the shikimic acid pathway of aromatic biosynthesis is probably not involved in the synthesis of phenylalanine and tyrosine by this organism.  相似文献   

7.
8.
The rate of individual ribosomal protein synthesis relative to total protein synthesis has been determined in Escherichia coli rel+ and rel- cells, under valyltRNA deprivation. These strains have a temperature-sensitive valyl-tRNA synthetase. Starvation was obtained following transfer to the cells to non-permissive temperature. Ribosomal proteins were obtained by treatment of either total lysates of freeze-thawed lysozyme spheroplasts or ammonium sulphate precipitate of ribosomes, with acetic acid. Differential labelling of the ribosomal proteins was observed in both strains: proteins from the rel+ strain appear more labelled than those from the rel- strain, the rate of labelling of individual proteins being about the same in both strains. Moreover ribosomal proteins were found as stable during starvation as total protein. It is thus concluded that in starving cells individual ribosomal proteins are not synthesized at equal rates. This indicates that the synthesis of ribosomal proteins is not only under the control of the rel gene.  相似文献   

9.
Summary Our understanding of amino acid biosynthesis in plants has grown by leaps and bounds in the last decade. It appears that most of the amino acid biosynthesis takes place in the chloroplast. Recent demonstration of glutamine synthetase and DAHP synthase in the vascular tisuue has added a new dimension in the complexity of the nitrogen cycle in plants. Isolation of various genes and transformation of plants with the modified forms of the genes are providing tools for understanding the regulation of various pathways. Plant transformation approaches are also going to provide the food of the future with an improved amino acid composition.  相似文献   

10.
The technique of affinity chromatography has been used to demonstrate that enzymes involved in the biosynthesis of tyrosine and phenylalanine in Escherichia coli undergo reversible interactions. Thus it has been shown that the aromatic amino acid aminotransferase (aromatic-amino-acid: 2-oxoglutarate amino-transferase, EC 2.6.1.57) reacts specifically with chorismate mutaseprephenate dehydrogenase (chorismate pyruvate mutase, EC 5.4.99.5 and prephenate: NAD+ oxidoreductase (decarboxylating), EC 1.3.1.12) in the absence of reactants and with chorimate mutase-prephenatedehydratase (prephenate hydro-lyase (decarboxylating), EC 4.2.1.51) in the presence of phyenylpyruvate. Tyrosine causes dissociation of the aminotransferase: mutasedehydrogenase complex while dissociation of the aminotransferase-mutasedehydratase complex occurs on omission of phenylpyruvate. Only the active form of chorismate mutase-prephenate dehydrogenase participates in complex formation.  相似文献   

11.
Strains of Escherichia coli that lack the branched-chain amino acid amino-transferase because of mutations in the ilvE gene had no growth requirement for leucine when the cells contained the aromatic amino acid aminotransferase that is the product of the tyrB gene. The presence of leucine increased the generation time of these cells and decreased the specific activity of the aromatic amino acid aminotransferase. It is concluded that this enzyme functions efficiently in leucine biosynthesis and can be repressed by leucine as well as by tyrosine.  相似文献   

12.
13.
14.
15.
Summary The effect of various amino acids on collagen biosynthesis was studied in organ cultures of chicken embryo tibiae. Competitive interrelationship between selected amino acids influences independently the uptake of proline and lysine, precursors of hydroxyproline and hydroxylysine, respectively, which are the two amino acids characteristics of collagen. On the basis of these influences, the possibility of biosynthesis of anomalous collagens is stressed. Parallel studies of biosynthesis of hydroxyproline and hydroxylysine are necessary.  相似文献   

16.
17.
The biological role of the "general control of amino acid biosynthesis" has been investigated by analyzing growth and enzyme levels in wild-type, bradytrophic, and nonderepressing mutant strains of Saccharomyces cerevisiae. Amino acid limitation was achieved by using either bradytrophic mutations or external amino acid imbalance. In the wild-type strain noncoordinate derepression of enzymes subject to the general control has been found. Derepressing factors were in the order of 2 to 4 in bradytrophic mutant strains grown under limiting conditions and only in the order of 1.5 to 2 under the influence of external amino acid imbalance. Nonderepressing mutations led to slower growth rates under conditions of amino acid limitation, and no derepression of enzymes under the general control was observed. The amino acid pools were found to be very similar in the wild type and in nonderepressing mutant strains under all conditions tested. Our results indicate that the general control affects all branched amino acid biosynthetic pathways, namely, those of the aromatic amino acids and the aspartate family, the pathways for the basic amino acids lysine, histidine, and arginine, and also the pathways of serine and valine biosyntheses.  相似文献   

18.
19.
We examined the enzymology and regulatory patterns of the aromatic amino acid pathway in 48 strains of cyanobacteria including representatives from each of the five major grouping. Extensive diversity was found in allosteric inhibition patterns of 3-deoxy-D-arabinoheptulosonate 7-phosphate synthase, not only between the major groupings but also within several of the generic groupings. Unimetabolite inhibition by phenylalanine occurred in approximately half of the strains examined; in the other strains unimetabolite inhibition by tyrosine and cumulative, concerted, and additive patterns were found. The additive patterns suggest the presence of regulatory isozymes. Even though both arogenate and prephenate dehydrogenase activities were found in some strains, it seems clear that the arogenate pathway to tyrosine is a common trait that has been highly conserved among cyanobacteria. No arogenate dehydratase activities were found. In general, prephenate dehydratase activities were activated by tyrosine and inhibited by phenylalanine. Chorismate mutase, arogenate dehydrogenase, and shikimate dehydrogenase were nearly always unregulated. Most strains preferred NADP as the cofactor for the dehydrogenase activities. The diversity in the allosteric inhibition patterns for 3-deoxy-D-arabinoheptulosonate 7-phosphate synthase, cofactor specificities, and the presence or absence of prephenate dehydrogenase activity allowed the separation of subgroupings within several of the form genera, namely, Synechococcus, Synechocystis, Anabaena, Nostoc, and Calothrix.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号