首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Previously, we demonstrated that ablation of alpha-synuclein (Snca) reduces arachidonate (20:4n-6) turnover in brain phospholipids through modulation of an endoplasmic reticulum-localized acyl-CoA synthetase (Acsl). The effect of Snca ablation on docosahexaenoic acid (22:6n-3) metabolism is unknown. In the present study, we examined the effect of Snca gene ablation on brain 22:6n-3 metabolism. We determined 22:6n-3 uptake and incorporation into brain phospholipids by infusing awake, wild-type and Snca-/- mice with [1-14C]22:6n-3 using steady-state kinetic modeling. In addition, because Snca modulates 20:4n-6-CoA formation, we assessed microsomal Acsl activity using 22:6n-3 as a substrate. Although Snca gene ablation does not affect brain 22:6n-3 uptake, brain 22:6n-3-CoA mass was elevated 1.5-fold in the absence of Snca. This is consistent with the 1.6- to 2.2-fold increase in the incorporation rate and turnover in ethanolamine glycerophospholipid, phosphatidylserine, and phosphatidylinositol pools. Increased 22:6n-3-CoA mass was not the result of altered Acsl activity, which was unaffected by the absence of Snca. While Snca bound 22:6n-3, Kd = 1.0 +/- 0.5 micromol/L, it did not bind 22:6n-3-CoA. These effects of Snca gene deletion on 22:6n-3 brain metabolism are opposite to what we reported previously for brain 20:4n-6 metabolism and are likely compensatory for the decreased 20:4n-6 metabolism in brains of Snca-/- mice.  相似文献   

2.
Murphy EJ  Owada Y  Kitanaka N  Kondo H  Glatz JF 《Biochemistry》2005,44(16):6350-6360
Heart fatty acid binding protein (H-FABP) is expressed in neurons, but its role in brain fatty acid incorporation and metabolism is poorly defined. We examined the effect of H-FABP gene ablation on brain incorporation of arachidonic ([1-(14)C]20:4n-6) or palmitic ([1-(14)C]16:0) acid in vivo. Analysis of brain mRNA confirmed gene ablation and demonstrated no compensatory changes in the levels of other FABP mRNA in the gene-ablated mice. In brains from H-FABP gene-ablated mice, the incorporation coefficient for [1-(14)C]20:4n-6 was reduced 24%, while that for [1-(14)C]16:0 was unaffected. Within the organic and aqueous fractions, significantly more [1-(14)C]20:4n-6 was distributed into the aqueous fraction, suggesting a disruption in the metabolic targeting of 20:4n-6 in these mice. There was less incorporation of [1-(14)C]20:4n-6 into total phospholipids and a marked reduction (51%) in the level of incorporation into the choline glycerophospholipids (ChoGpl). Because FABP can influence steady-state lipid mass, brain individual lipid masses were measured. The brain total phospholipid mass was reduced 17% by gene ablation, ascribed to a 27% and 32% reduction in the masses of ChoGpl and sphingomyelin, respectively. Plasmalogen subclass masses were also reduced, suggesting that H-FABP may augment brain plasmalogen synthesis. In gene-ablated mice, the phosphatidylinositol 20:4n-6 level was reduced 25%, while the proportion of total n-6 fatty acids was reduced in the major phospholipid classes. Thus, these results demonstrate for the first time that H-FABP expression influences brain 20:4n-6 uptake and trafficking as well as steady-state brain lipid levels.  相似文献   

3.
4.
DJ-1 is a ubiquitously expressed protein involved in various cellular processes including cell proliferation, RNA-binding, and oxidative stress. Mutations that result in loss of DJ-1 function lead to early onset parkinsonism in humans, and DJ-1 protein is present in pathological lesions of several tauopathies and synucleinopathies. In order to further investigate the role of DJ-1 in human neurodegenerative disease, we have generated novel polyclonal and monoclonal antibodies to human DJ-1 protein. We have characterized these antibodies and confirmed the pathological co-localization of DJ-1 with other neurodegenerative disease-associated proteins, as well as the decrease in DJ-1 solubility in disease tissue. In addition, we report the presence of DJ-1 in a large molecular complex (> 2000 kDa), and provide evidence for an interaction between endogenous DJ-1 and alpha-synuclein in normal and diseased tissue. These findings provide new avenues towards the study of DJ-1 function and how loss of its activity may lead to parkinsonism. Furthermore, our results provide further evidence for the interplay between neurodegenerative disease-associated proteins.  相似文献   

5.
To elucidate the role of alpha-synuclein in the pathogenesis of Parkinson's disease, both human alpha-synuclein transgenic mice and targeted overexpression of human alpha-synuclein in rat substantia nigra using viral vector-based methods have been studied, however, little is known about the pathogenetic changes of dopaminergic neuron loss. Therefore, it is necessary to address whether the pathogenetic changes in brains with Parkinson's disease are recapitulated in these models. Here, we used the recombinant adeno-associated viral (rAAV) vector system for human alpha-synuclein gene transfer to rat substantia nigra and observed approximately 50% loss of dopaminergic neurons at 13 weeks after infection, which was comparably slower than the progression of neurodegeneration reported in other studies. In the slower progression of neurodegeneration, we identified several important features in common with the pathogenesis of Parkinson's disease, such as phosphorylation of alpha-synuclein at Ser129 and activation of caspase-9. Both findings were also evident in cortical tissues overexpressing alpha-synuclein via rAAV. Our results indicate that overexpression of alpha-synuclein via rAAV apparently recapitulates several important features of brains with Parkinson's disease and dementia with Lewy bodies, and thus alpha-synucleinopathy described here is likely to be an ideal model for the study of the pathogenesis of Parkinson's disease and dementia with Lewy bodies.  相似文献   

6.
Cell culture systems have demonstrated a role for cytoplasmic fatty acid-binding proteins (FABP) in lipid metabolism, although a similar function in intact animals is unknown. We addressed this issue using heart fatty acid-binding protein (H-FABP) gene-ablated mice. H-FABP gene ablation reduced total heart fatty acid uptake 40 and 52% for [1-(14)C]16:0 and [1-(14)C]20:4n-6 compared with controls, respectively. Similarly, the amount of fatty acid found in the aqueous fraction was reduced 40 and 52% for [1-(14)C]16:0 and [1-(14)C]20:4n-6, respectively. Less [1-(14)C]16:0 entered the triacylglycerol pool, with significant redistribution of fatty acid between the triacylglycerol pool and the total phospholipid pool. Less [1-(14)C]20:4n-6 entered each lipid pool measured, but these changes did not alter the distribution of tracer among these pools. In gene-ablated mice, significantly more [1-(14)C]16:0 was targeted to choline and ethanolamine glycerophospholipids, whereas more [1-(14)C]20:4n-6 was targeted to the phosphatidylinositol (PtdIns) pool. H-FABP gene ablation significantly increased PtdIns mass 1.4-fold but reduced PtdIns 20:4n-6 mass 30%. Consistent with a reported effect of FABP on plasmalogen mass, ethanolamine plasmalogen mass was reduced 30% in gene-ablated mice. Further, 20:4n-6 mass was reduced in each of the three other major phospholipid classes, suggesting H-FABP has a role in maintaining steady-state 20:4n-6 mass in heart. In summary, H-FABP was important for heart fatty acid uptake and targeting of fatty acids to specific heart lipid pools as well as for maintenance of phospholipid pool mass and acyl chain composition.  相似文献   

7.
In vitro 1H- and 13C-NMR spectroscopy was used to investigate the effect of ammonia on fatty acid synthesis and composition in cultured astrocytes. Cells were incubated 3 and 24 h with 5 mM ammonia in the presence or absence of the glutamine synthetase inhibitor methionine sulfoximine. An increase of de novo synthesized fatty acids and the glycerol subunit of lipids was observed after 3 h treatment with ammonia (35% and 40% over control, respectively), the initial time point examined. Both parameters further increased significantly to 85% and 60% over control after 24 h ammonia treatment. Three hours incubation with ammonia increased the synthesis of diacylglycerides, while formation of triacylglycerides was decreased (40% over and 15% under control, respectively). The degradation of fatty acids was not affected by ammonia treatment. Furthermore, ammonia caused alterations in the composition of fatty acids, e.g. increased mono- and decreased polyunsaturated fatty acids (85% over and 15% under control concentrations, respectively). The decrease of polyunsaturated fatty acids was even more pronounced in isolated astrocytic mitochondria (39% lower than controls). Our results suggest ammonia-induced abnormalities in astrocytic membranes, which may be related to astrocytic mitochondrial dysfunction in hyperammonemic states. Most of the observed effects of ammonia on fatty acid synthesis and composition were ameliorated when glutamine synthetase was inhibited by methionine sulfoximine, supporting a pathological role of glutamine in ammonia toxicity. This study further emphasizes the importance of investigating the relative contribution of exogenous ammonia, effects of glutamine and of glutamine-derived ammonia on astrocytes and astrocytic mitochondria.  相似文献   

8.
Many lines of evidence suggest that alpha-synuclein can be secreted from cells and can penetrate into them, although the detailed mechanism is not known. In this study, we investigated the amino acid sequence motifs required for the membrane translocation of alpha-synuclein, and the mechanistic features of the phenomenon. We first showed that not only alpha-synuclein but also beta- and gamma-synucleins penetrated into live cells, indicating that the conserved N-terminal region might be responsible for the membrane translocation. Using a series of deletion mutants, we demonstrated that the 11-amino acid imperfect repeats found in synuclein family members play a critical role in the membrane translocation of these proteins. We further demonstrated that fusion peptides containing the 11-amino acid imperfect repeats of alpha-synuclein can transverse the plasma membrane, and that the membrane translocation efficiency is optimal when the peptide contains two repeat motifs. alpha-Synuclein appeared to be imported rapidly and efficiently into cells, with detectable protein in the cytoplasm within 5 min after exogenous treatment. Interestingly, the import of alpha-synuclein at 4 degrees C was comparable with the import observed at 37 degrees C. Furthermore, membrane translocation of alpha-synuclein was not significantly affected by treatment with inhibitors of endocytosis. These results suggest that the internalization of alpha-synuclein is temperature-insensitive and occurs very rapidly via a mechanism distinct from normal endocytosis.  相似文献   

9.
10.
The effect of ammonia onl-glutamate (L-GLU) uptake was examined in cultured astrocytes. Acute ammonia treatment (5–10 mM) enhanced L-[3H]GLU uptake by 20–42% by increasing the Vmax; this persisted for 2 days and then started to decline. Ammonia, however, did not affect the uptake ofd-[3H]aspartate (D-ASP), a non-metabolizable analog of L-GLU, that uses the same transport carrier as L-GLU. Also, L-GLU uptake was not affected during the first 2 min of the assay. Thus, ammonia did not have an acute effect on L-GLU transport (translocation); rather, ammonia enhanced the accumulation or “trapping” of L-GLU or its by-products. Chronic ammonia treatment, on the other hand, inhibited L-GLU transport in astrocytes by ∼30–45% and this was due to a decrease in Vmax, suggesting that the number of L-GLU transporters was decreased. This inhibitory effect was observed after 1 day of treatment and persisted for at least 7 days. The inhibition of L-GLU transport was partially reversible following removal of ammonia. The effects of ammonia on L-GLU transport and uptake may explain the abnormal L-GLU neurotransmission observed in hyperammonemia/hepatic encephalopathy, and the brain swelling associated with fulminant hepatic failure.  相似文献   

11.
Overexpression of human alpha-synuclein in model systems, including cultured neurons, drosophila and mice, leads to biochemical and pathological changes that mimic synucleopathies including Parkinson's disease. We have overexpressed both wild-type (WT) and mutant alanine53-->threonine (A53T) human alpha-synuclein by transgenic injection into Caenorhabditis elegans. Motor deficits were observed when either WT or A53T alpha-synuclein was overexpressed with a pan-neuronal or motor neuron promoter. Neuronal and dendritic loss were accelerated in all three sets of C. elegans dopaminergic neurons when human alpha-synuclein was overexpressed under the control of a dopaminergic neuron or pan-neuronal promoter, but not with a motor neuron promoter. There were no significant differences in neuronal loss between overexpressed WT and A53T forms or between worms of different ages (4 days, 10 days or 2 weeks). These results demonstrate neuronal and behavioral perturbations elicited by human alpha-synuclein in C. elegans that are dependent upon expression in specific neuron subtypes. This transgenic model in C. elegans, an invertebrate organism with excellent experimental resources for further genetic manipulation, may help facilitate dissection of pathophysiologic mechanisms of various synucleopathies.  相似文献   

12.
In the dentate gyrus of the mouse hippocampus, presynaptic recruitment of norepinephrine in response to repeated-burst stimulation can be described in terms of an interaction between storage and readily releasable pools. The dynamics of this interaction depends on neuronal activity (bursting), so that the higher the demand for norepinephrine, the faster it is delivered from the storage pool. We also found that alpha-synuclein, a presynaptic protein that plays a crucial role in dopamine compartmentalization in the striatum, is also involved in the compartmentalization of norepinephrine in the dentate gyrus. Experiments in transgenic mice with modified or absent alpha-synuclein revealed that the familial Parkinson's disease-linked alpha-synuclein mutation A30P can cause selective changes in the function of noradrenergic terminals. Addition of mutated human alpha-synuclein abolished the normal norepinephrine mobilization. There were no compensatory mechanisms available in the norepinephrine presynaptic terminals. In contrast, deletion of mouse alpha-synuclein is compensated for by increased vesicle transport from the storage pool. The effects are essentially the same as previously reported for dopaminergic terminals in the striatum, indicating that the important role of alpha-synuclein in neurotransmitter mobilization is not limited to dopaminergic terminals.  相似文献   

13.
Accumulation of beta-amyloid peptide (Abeta), which is a landmark of Alzheimer's disease, may alter astrocyte functions before any visible symptoms of the disease occur. Here, we examined the effects of Abeta on biosynthesis and release of diazepam-binding inhibitor (DBI), a polypeptide primarily expressed by astroglial cells in the CNS. Quantitative RT-PCR and specific radioimmunoassay demonstrated that aggregated Abeta(25-35), at concentrations up to 10(-4) m, induced a dose-dependent increase in DBI mRNA expression and DBI-related peptide release from cultured rat astrocytes. These effects were totally suppressed when aggregation of Abeta(25-35) was prevented by Congo red. Measurement of the number of living cells revealed that Abeta(25-35) induced a trophic rather than a toxic effect on astrocytes. Administration of cycloheximide blocked Abeta(25-35)-induced increase of DBI gene expression and endozepine accumulation in astrocytes, indicating that protein synthesis is required for DBI gene expression. Altogether, the present data suggest that Abeta-induced activation of endozepine biosynthesis and release may contribute to astrocyte proliferation associated with Alzheimer's disease.  相似文献   

14.
Environmental and genetic factors that contribute to the pathogenesis of Parkinson's disease are discussed. Mutations in the alpha-synuclein (alphaSYN ) gene are associated with rare cases of autosomal-dominant Parkinson's disease. We have analysed the dopaminergic system in transgenic mouse lines that expressed mutant [A30P]alphaSYN under the control of a neurone-specific Thy-1 or a tyrosine hydroxylase (TH) promoter. The latter mice showed somal and neuritic accumulation of transgenic [A30P]alphaSYN in TH-positive neurones in the substantia nigra. However, there was no difference in the number of TH-positive neurones in the substantia nigra and the concentrations of catecholamines in the striatum between these transgenic mice and non-transgenic littermates. To investigate whether forced expression of [A30P]alphaSYN increased the sensitivity to putative environmental factors we subjected transgenic mice to a chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) regimen. The MPTP-induced decrease in the number of TH-positive neurones in the substantia nigra and the concentrations of catecholamines in the striatum did not differ in any of the [A30P]alphaSYN transgenic mouse lines compared with wild-type controls. These results suggest that mutations and forced expression of alphaSYN are not likely to increase the susceptibility to environmental toxins in vivo.  相似文献   

15.
Intracellular inclusions containing alpha-synuclein (alpha SN) are pathognomonic features of several neurodegenerative disorders. Inclusions occur in oligodendrocytes in multiple system atrophy (MSA) and in neurons in dementia with Lewy bodies (DLB) and Parkinson's disease (PD). In order to identify disease-associated changes of alpha SN, this study compared the levels, solubility and molecular weight species of alpha SN in brain homogenates from MSA, DLB, PD and normal aged controls. In DLB and PD, substantial amounts of detergent-soluble and detergent-insoluble alpha SN were detected compared with controls in grey matter homogenate. Compared with controls, MSA cases had significantly higher levels of alpha SN in the detergent-soluble fraction of brain samples from pons and white matter but detergent-insoluble alpha SN was not detected. There was an inverse correlation between buffered saline-soluble and detergent-soluble levels of alpha SN in individual MSA cases suggesting a transition towards insolubility in disease. The differences in solubility of alpha SN between grey and white matter in disease may result from different processing of alpha SN in neurons compared with oligodendrocytes. Highly insoluble alpha SN is not involved in the pathogenesis of MSA. It is therefore possible that buffered saline-soluble or detergent-soluble forms of alpha SN are involved in the pathogenesis of other alpha SN-related diseases.  相似文献   

16.
Using an in vivo fatty acid model and operational equations, we reported that esterified and unesterified concentrations of docosahexaenoic acid (DHA, 22 : 6 n-3) were markedly reduced in brains of third-generation (F3) rats nutritionally deprived of alpha-linolenic acid (18 : 3 n-3), and that DHA turnover within phospholipids was reduced as well. The concentration of docosapentaenoic acid (DPA, 22 : 5 n-6), an arachidonic acid (AA, 20 : 4 n-6) elongation/desaturation product, was barely detectable in control rats but was elevated in the deprived rats. In the present study, we used the same in vivo model, involving the intravenous infusion of radiolabeled AA to demonstrate that concentrations of unesterified and esterified AA, and turnover of AA within phospholipids, were not altered in brains of awake F3-generation n-3-deficient rats, compared with control concentrations. Brain DPA-CoA could be measured in the deprived but not control rats, and AA-CoA was elevated in the deprived animals. These results indicated that AA and DHA are recycled within brain phospholipids independently of each other, suggesting that recycling is regulated independently by AA- and DHA-selective enzymes, respectively. Competition among n-3 and n-6 fatty acids within brain probably does not occur at the level of recycling, but at levels of elongation and desaturation (hence greater production of DPA during n-3 deprivation), or conversion to bioactive eicosanoids and other metabolites.  相似文献   

17.
A marine yellowish picoplankton, strain PP301, which was newly isolated from the surface seawater of the western Pacific Ocean was an eminent producer of polyunsaturated fatty acids. Its fatty acids were mostly shared by the shortest saturated form (14:0, 20–30%) and polyunsaturated forms (20:4, EPA and DHA) which accounted for about 50% of the total fatty acids. The amount of intermediate forms in 16 and 18 carbon chains were very little. This composition was consistently observed irrespective of the growth temperatures (15–35 °C).  相似文献   

18.
We have examined the effects of culturing neonatal rat-brain astrocytes in medium containing delipidated serum, with or without added linoleic acid (LA, 18:26), on membrane fatty-acid composition and functions. After 18–21 days in culture, polyunsaturated fatty acids (PUFA) constituted24 mol% of the total fatty acids in the astrocytes grown in delipidated media (controls); these proportions were increased by 35–40% to33 mol% when the cells were supplemented with 35M LA. Notable differences in the PUFA profiles of the cells cultured with or without added LA included: (a) higher proportions of 6 PUFA in the LA-supplemented astrocytes (25%, relative to10% in controls) that were accompanied by an increase in the ratio of 6/3 PUFA (from <2 in controls to 5), and (b) higher proportions of 20:39 and 22:39 in the control astrocytes (>5%) relative to the LA-supplemented cells (1%). The major metabolites in the 6 PUFA-enriched cells were arachidonic (20:46), adrenic (22:46) and docosapentaenoic (22:56) acids (15, 5 & 3 mol%, respectively). Enrichment of the astrocytes in 6 PUFA did not alter basal levels of cAMP, nor did it affect the amounts of cAMP formed in response to forskolin, isoproterenol, adenosine or histamine. However, dopamine-dependent increases in cAMP formation in the presence of the phosphodiesterase inhibitor, Ro 20-1724, were reduced by 25% relative to those in controls. LA supplementation modified uptake of [3H]adenosine into the astrocytes; values for Kt for a high affinity transport were increased relative to controls, and maximum capacity of a lower affinity process was reduced. Uptake of [3H]glutamate was not altered in the 6 PUFA-enriched astrocytes. This study demonstrated that cultured astrocytes take up exogenous linoleic acid and incorporate its metabolites into, phospholipid, and that the resulting changes in membrans PUFA composition modify only specific cell functional properties.Abbreviations PUFA polyunsaturated fatty acid(s) - EFA essential fatty acid(s) - LA linoleic acid - AA arachidonic acid - DHA docosahexaenoic acid - BSA bovine serum albumin - DMEM Dulbecco's modified Eagle's medium - TBARS thiobarbituric-acid-reactive substances - NECA 5-N-ethylcarboxamidoadenosine Special issue dedicated to Dr. Leon S. Wolfe.  相似文献   

19.
20.
α-synuclein (αS) and β-synuclein (βS) are homologous proteins implicated in Parkinson's disease and related synucleinopathies. While αS is neurotoxic and its aggregation and deposition in Lewy bodies is related to neurodegeneration, βS is considered as a potent inhibitor of αS aggregation and toxicity. No mechanism for the neuroprotective role of βS has been described before. Here, we report that similar to αS, βS normally occurs in lipid-associated, soluble oligomers in wild-type (WT) mouse brains. We partially purified βS and αS proteins from whole mouse brain by size exclusion followed by ion exchange chromatography and found highly similar elution profiles. Using this technique, we were able to partially separate βS from αS and further separate βS monomer from its own oligomers. Importantly, we show that although αS and βS share high degree of similarities, βS oligomerization is not affected by increasing cellular levels of polyunsaturated fatty acids (PUFAs), while αS oligomerization is dramatically enhanced by PUFA. We show the in vivo occurrence of hetero-oligomers of αS and βS and suggest that βS expression inhibits PUFA-enhanced αS oligomerization by forming hetero-oligomers up to a quatramer that do not further propagate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号