首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
赵柳  张莹  顾福康 《动物学杂志》2005,40(5):114-118
总结了应用显微和亚显微技术、生化去膜和扫描电镜术、免疫荧光显微术等显示的原生动物纤毛虫皮层细胞骨架的基本结构,以及皮层细胞骨架结构组分中α-,β-和γ-微管蛋白、表质蛋白和联结蛋白、中心蛋白等的功能特征,并分析了未来研究的基本趋势。  相似文献   

2.
细胞骨架--肌动蛋白纤维   总被引:8,自引:1,他引:7  
20世纪60年代以来的研究发现,真核细胞质中存在着由蛋白纤维构成的复杂网络状结构——细胞骨架(cytoskeleton)。另外,植物细胞中也有细胞骨架成分。  相似文献   

3.
细胞的骨架系统   总被引:4,自引:0,他引:4  
细胞骨架是一类复杂的蛋白质纤维结构,广泛地存在于动物细胞、植物细胞甚至一些原生动物与酵母中。细胞骨架按分布区域可分为胞质骨架和细胞核骨架,胞质骨架又具有三种类型:微管、微丝和中等纤维.胞质骨架和核骨架以及三种胞质骨架之间的结构、性质和功能上是有所区别的,但另一方面它们又协调地参予细胞的一系列生理活动,共同组成了细胞的骨架系统。六十年代初,波特(K·Porter)等第一次用电镜证明了细胞质中骨架结构的多样性,他们发现几乎每一个真核细胞的胞质中都存在三种类型的骨架结构,即微管、微丝和中等纤维。之后,对它们的结构、性质和功能进行了深入的研究。七十年代以来,在细胞核中又发现了一个形态类似于胞质骨架、蛋白质性质的网架结构——细胞核骨架(简称核骨架)对它可能的作用也有了初步的认识,这些发现丰富了骨架系统的内容。现在,已经证实胞质骨架和核骨架在结构与功能上是密切联系的,两者构成了统一的细胞骨架体系,对细胞生长、运动及细胞分化等过程起着重要的作用。  相似文献   

4.
mRNA定位是产生细胞极性的一种重要机制,在卵母细胞发生、早期胚胎发育及某些细胞特定功能的建立和维持中起重要作用。沿细胞骨架进行mRNA的主动转运是mRNA定位的主要机制之一,在mRNA的运输和锚定过程中,定位元件、特异的RNA结合蛋白、发动蛋白和细胞骨架分别起着重要的作用。  相似文献   

5.
神经细胞骨架对神经元功能有重要作用。药物成瘾会导致神经细胞病态发生,几乎在所有药物成瘾的蛋白质组学的研究中都能检测到细胞骨架蛋白的变化,细胞骨架蛋白在这个过程涉及神经细胞结构、突触可塑性、信号转导、功能蛋白的降解或修饰以及能量代谢等方面。本文综述了神经细胞骨架在药物成瘾中的研究。  相似文献   

6.
真核细胞伴侣素CCT及其与细胞骨架的关系   总被引:1,自引:0,他引:1  
CCT(the chaperonin containing tailless complex polypeptide 1)是一种广泛存在于细胞浆中的异型寡聚蛋白,也是迄今为止真核细胞胞浆中发现的唯一伴侣素。目前认为大约15%的哺乳动物蛋白折叠需要CCT的参与,其中研究得最多的是肌动蛋白和微管蛋白。研究发现,CCT的异常会导致细胞骨架蛋白发生改变,甚至影响细胞骨架的形成与解聚。由此推测,一些细胞骨架相关疾病可能与CCT异常有关。  相似文献   

7.
核膜血影重复蛋白(Nesprins)连接细胞核与多种细胞骨架和(/或)细胞器,在细胞核与细胞骨架定位、质-核间物质运输和动力传导、核膜构建、细胞迁移、锚定和极性建立等过程中发挥重要作用.本文综述核膜血影重复蛋白的发现、编码基因、结构、功能以及与相关疾病的关系研究现状,并展望潜在的未来研究动向.  相似文献   

8.
APC蛋白的结构特征及其与细胞骨架的关系   总被引:10,自引:0,他引:10  
马宗源  李祺福 《生命科学》2004,16(1):16-18,34
编码APC蛋白(adenomatous polyposis coli,APC)基因的缺失突变会导致家族性和散发性的结肠癌,APC蛋白除了能直接参与Wnt信号途径调节β—catenin的浓度之外,最近的研究表明APC蛋白能够与细胞骨架的主要成分微管和微丝直接或间接结合,通过调节微管的解聚和聚合,间接调节染色体的分离,作为潜在的细胞骨架调节分子将细胞骨架与重要的细胞信号转导通路紧密联系在一起。  相似文献   

9.
埃兹蛋白:生物学特征及其在肿瘤转移中的作用   总被引:8,自引:0,他引:8  
埃兹蛋白(ezrin)是埃兹蛋白、根蛋白和膜突蛋白(ezrin-radixin-moesin,ERM)家族成员之一,主要参与上皮细胞中细胞骨架与胞膜之间的连接,具有维持细胞形态和运动、连接黏附分子及调节信号转导等功能。近年来的研究发现,埃兹蛋白在肿瘤细胞中的表达异常,提示其在肿瘤的浸润、转移机制中发挥重要作用。  相似文献   

10.
钙对细胞骨架的调控及其在生命活动中的重要作用   总被引:12,自引:0,他引:12  
本文综述了钙对细胞骨架的调控方式主要有两种方式: 一是钙离子直接对细胞骨架结合蛋白进行调节;二是钙离子通过钙调节蛋白到钙调节蛋白结合蛋白进而对细胞骨架进行调节  相似文献   

11.
Mechanoreceptor cells develop a specialized cytoskeleton that plays structural and sensory roles at the site of mechanotransduction. However, little is known about how the cytoskeleton is organized and formed. Using electron tomography and live-cell imaging, we resolve the 3D structure and dynamics of the microtubule-based cytoskeleton in fly campaniform mechanosensory cilia. Investigating the formation of the cytoskeleton, we find that katanin p60-like 1 (kat-60L1), a neuronal type of microtubule-severing enzyme, serves two functions. First, it amplifies the mass of microtubules to form the dense microtubule arrays inside the sensory cilia. Second, it generates short microtubules that are required to build the nanoscopic cytoskeleton at the mechanotransduction site. Additional analyses further reveal the functional roles of Patronin and other potential factors in the local regulatory network. In all, our results characterize the specialized cytoskeleton in fly external mechanosensory cilia at near-molecular resolution and provide mechanistic insights into how it is formed.  相似文献   

12.
Hormones affect growth and alter the cytoskeleton suggesting that hormones and the cytoskeleton interact with each other. The cytoskeleton of ancestral algae such as Chara showed similar sensitivity to auxin as higher plants, even in generative structures but the sensitivity differed between IAA and alpha-NAA and presumably other auxins. The ability of cells to elongate depends on microtubule organization during the transition from disorganized to perpendicular to longitudinal organization of the cytoskeleton. Because of the many functions of the cytoskeleton it is possible that its composition is influenced by selective gene expression and adaptation to growth regulators. Co-localization of microtubules and F-actin change at a high temporal and spatial scale. High resolution measurements of mRNA expression indicate rapid turnover that may affect the composition of the cytoskeleton.  相似文献   

13.
Recently it has been established that cytoskeleton-associated epidermal growth factor (EGF) receptors are predominantly of the high-affinity class and that EGF induces a recruitment of low-affinity receptors to the cytoskeleton. The nature of this EGF-induced receptor-cytoskeleton interaction, however, is still unknown. Therefore, we have studied the association of mutated EGF receptors with the cytoskeleton. Receptor deletion mutants lacking almost all intracellular amino acid residues displayed no interaction with the cytoskeleton, demonstrating that the cytoplasmic receptor domain is involved in this interaction. Further analysis revealed that receptor-cytoskeleton interaction is independent of receptor kinase activity and the C-terminal 126 amino acid residues, which include the auto-phosphorylation sites. Furthermore, it is shown that the high-affinity receptor subclass is not essential for association of low-affinity receptors to the cytoskeleton. EGF receptor-cytoskeleton interaction was increased, however, by treatment with sphingomyelinase, an enzyme known to induce membrane protein clustering, indicating that EGF receptor clustering may cause the association to the cytoskeleton.  相似文献   

14.
The intracellular movement and positioning of organelles and vesicles is mediated by the cytoskeleton and molecular motors. Small GTPases like Rab and Arf proteins are main regulators of intracellular transport by connecting membranes to cytoskeleton motors or adaptors. However, it is becoming clear that interactions between these small GTPases and the cytoskeleton are important not only for the regulation of membrane transport. In this review, we will cover our current understanding of the mechanisms underlying the connection between Rab and Arf GTPases and the cytoskeleton, with special emphasis on the double role of these interactions, not only in membrane trafficking but also in membrane and cytoskeleton remodeling. Furthermore, we will highlight the most recent findings about the fine control mechanisms of crosstalk between different members of Rab, Arf, and Rho families of small GTPases in the regulation of cytoskeleton organization.  相似文献   

15.
Reactive oxygen species (ROS) disrupt the barrier function of airway epithelial cells through a mechanism that appears to involve remodeling of the actin cytoskeleton. Similarly, keratinocyte growth factor (KGF) has been shown to protect against ROS-induced loss of barrier function through a mechanism that may also involve the actin cytoskeleton. To further determine the role of the actin cytoskeleton in ROS-induced barrier injury, we quantified the relative amount of total actin associated with the cytoskeleton following exposure to hydrogen peroxide (H(2)O(2)) and pretreatment with KGF. We also determined the role of the actin-myosin contractile mechanism in the process by quantifying the relative amount of myosin heavy chain (MHC) associated with the cytoskeleton. While the transepithelial resistance (TER) of a monolayer of airway epithelial cells (Calu-3) decreased after 2 h of continuous exposure to 0.5 mM H(2)O(2), actin and MHC, both dissociated from the cytoskeleton within 15 min of H(2)O(2) exposure. The TER of the monolayers remained depressed although both actin and myosin returned to the cytoskeleton by 4 h after the initiation of H(2)O(2) exposure. Filamentous actin (f-actin) staining suggested that the re-associating actin took the form of short fibers associated with cortical actin rather than long stress fibers. Furthermore, pretreatment with KGF prevented the loss of actin and MHC from the actin cytoskeleton but did not prevent the decrease in TER. These studies suggest that actin disassembly from the cytoskeleton is important in the loss of barrier function, but that it is not the overall amount of actin that is associated with the cytoskeleton that is important, rather it is the contribution this actin makes to the architectural cohesiveness of the cell that contributes to the barrier function.  相似文献   

16.
Mechanical forces are known to influence cellular processes with consequences at the cellular and physiological level. The cell nucleus is the largest and stiffest organelle, and it is connected to the cytoskeleton for proper cellular function. The connection between the nucleus and the cytoskeleton is in most cases mediated by the linker of nucleoskeleton and cytoskeleton (LINC) complex. Not surprisingly, the nucleus and the associated cytoskeleton are implicated in multiple mechanotransduction pathways important for cellular activities. Herein, we review recent advances describing how the LINC complex, the nuclear lamina, and nuclear pore complexes are involved in nuclear mechanotransduction. We will also discuss how the perinuclear actin cytoskeleton is important for the regulation of nuclear mechanotransduction. Additionally, we discuss the relevance of nuclear mechanotransduction for cell migration, development, and how nuclear mechanotransduction impairment leads to multiple disorders.  相似文献   

17.
反义封闭NGAL基因表达对SHEEC食管癌细胞微丝骨架的影响   总被引:7,自引:3,他引:7  
为了研究反义封闭NGAL基因表达对SHEEC食管癌细胞微丝骨架以及肿瘤细胞生物学行为的影响,以不同长度NGAL基因片段反义表达载体和硫代修饰反义寡核苷酸单链片段转染SHEEC食管癌细胞,通过G418筛选,建立一系列旨在封闭SHEEC食管癌细胞NGAL基因表达的亚细胞克隆.在细胞内F-肌动蛋白(F-actin)及DNA荧光双标记基础上,通过流式细胞术、激光共聚焦显微镜扫描术等技术手段检测封闭反义NGAL基因表达后, SHEEC食管癌细胞中F-actin和DNA含量、F-actin形态结构以及肿瘤细胞生物学行为的变化特征.结果显示,反义封闭NGAL基因表达后,SHEEC食管癌细胞F-actin的含量明显降低,与永生化食管上皮细胞SHEE相近,但细胞分裂增殖指数未见明显变化.表明反义封闭NGAL基因表达对SHEEC食管癌细胞的微丝骨架有明显影响,而对SHEEC食管癌细胞的分裂增殖影响不明显.激光共聚焦显微镜扫描观测显示,反义封闭NGAL基因表达可使SHEEC食管癌细胞F-actin分布均匀,F-actin小体减少,细胞间连接重新建立,结构较紧密,主要形态结构特征与SHEE细胞趋于一致.提示反义封闭NGAL基因表达可对SHEEC食管癌细胞的微丝骨架F-actin产生明显影响,推测癌细胞的微丝骨架F-actin可能是NGAL基因在SHEEC食管癌细胞中发挥功能的一种作用环节.  相似文献   

18.
Binding experiments were performed to demonstrate a direct interaction between cytoskeletons from human blood platelets and phosphatidylserine. A centrifugation technique using radiolabeled phosphatidylserine-vesicles and Triton X-100 insoluble residues from unstimulated human platelets was used to assess the binding. Interaction between cytoskeleton and phospholipid is demonstrated to be specific for phosphatidylserine. No binding was observed for phosphatidylcholine. The binding of phosphatidylserine was saturable and dependent on the concentration of cytoskeleton used. The interaction between phosphatidylserine and the cytoskeleton appeared to be completely reversible. The existence of a reversible and specific interaction between phosphatidylserine and the cytoskeleton of unstimulated platelets would suggest a role for the cytoskeleton in the maintenance of the asymmetric distribution of this lipid in the plasma membrane. We have previously shown (Comfurius et al. (1985) Biochim. Biophys. Acta 815, 143-148) that in activated platelets a strong correlation exists between degradation of platelet cytoskeletal proteins by the endogenous calcium-dependent proteinase (calpain) and exposure of phosphatidylserine at their outer surface. Nevertheless, hydrolysis of the isolated cytoskeleton by calpain did not result in a change in the parameters of the binding between phosphatidylserine and cytoskeleton. Also, sulfhydryl oxidation of the cytoskeleton by diamide did not affect its binding properties for phosphatidylserine, in spite of the fact that diamide treatment of platelets results in exposure of phosphatidylserine at the outer surface. Exposition of phosphatidylserine upon activation of platelets cannot be directly ascribed to a change in affinity or number of binding sites of the modified cytoskeleton as measured in model systems. However, it cannot be excluded that topological rearrangements of the cytoskeleton as occur within the cell during platelet activation lead to a decreased contact between cytoskeleton and lipid, irrespective of the binding parameters.  相似文献   

19.
P-selectin glycoprotein ligand-1 (PSGL-1) is the best-characterized selectin ligand that has been demonstrated to mediate leukocytes rolling on endothelium and leukocytes recruitment into inflamed tissue in vivo. In addition to its direct role in leukocyte capturing, PSGL-1 also functions as a signal-transducing receptor. The present work showed that after cross-linking of PSGL-1 with KPL1, an anti-PSGL-1 monoclonal antibody, PSGL-1 linked to the cytoskeleton and became a detergent-insoluble component in activated neutrophils. The antibody cross-linking led to the polymerization and redistribution of F-actin-based cytoskeleton, and this alteration of cytoskeleton was spatiotemporally related to the polarization of PSGL-1. PSGL-1's polarization was cytoskeleton-dependent because it was eliminated by cytochalasin B. Furthermore, the polymerization and redistribution of F-actin filaments were tyrosine-phosphorylation-dependent since the alteration of F-actin-based cytoskeleton was severely blocked by genistein, a universal tyrosine kinase inhibitor. STI571, a small molecule inhibitor for cytoplasmic tyrosine kinase c-Abl, also inhibited the alteration of F-actin-based cytoskeleton, and c-Abl was redistributed to where F-actin concentrated in the activated neutrophils. The results suggested that cross-linking of PSGL-1 induces the phosphorylation-dependent and c-Abl-involved alteration of F-actin-based cytoskeleton in neutrophils.  相似文献   

20.
Formation of division spindles in higher plant meiosis   总被引:1,自引:0,他引:1  
Depolymerisation of the MT cytoskeleton during late prophase makes it impossible to follow the cytoskeleton cycle in centrosomeless plant meiocytes. This paper describes rearrangements of the MT cytoskeleton during plant meiotic spindle formation in normally dividing pollen mother cells in various higher plant species and forms in which the cytoskeleton does not depolymerise at prophase. In such variants of the wild-type, cytoskeleton rearrangements can be observed at late prophase/early prometaphase. Radial MT bundles coalesce in the meridian plane, reorientate tangentially, curve and give rise to a developed ring-shaped perinuclear cytoskeleton system at the meridian. During nuclear envelope breakdown this ring disintegrates and splits into a set of free MT bundles. Three sub-stages of prometaphase are indicated: early prometaphase (disintegration of perinuclear ring and invasion of MTs into the former nuclear area), middle prometaphase or chaotic stage (formation of bipolar spindle fibres), and late prometaphase (formation of bipolar spindle). Analysis of a range of abnormal phenotypes (disintegrated, multiple, polyarchal, chaotic spindles) reveals two previously unknown processes during late prometaphase: axial orientation and consolidation of the spindle fibres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号