首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. A non-sedimentable fraction of potato tuber has been found to catalyze [14C]glucose transfer from [14C]glucose 1-phosphate to an endogenous proteic acceptor in the absence of added primer. This transfer is activated by Mn2+. 2. The labeled glucosylated product formed is trichloroacetic acid insoluble and sensitive to proteolytic and amylolytic digestions. It appears to be a glucoprotein with glucosyl chains bound to the peptide portion of the molecule through an unknown linkage. 3. The carbohydrate portion of the glucoprotein can be released by prolonged incubations with the enzymatic preparation, and becomes in turn, trichloroacetic acid soluble and alcohol precipitable. 4. Both products, the glucoprotein as well as the alpha-1,4-glucan that seems to arise from the enzymatic cleavage of the former, can be used as primers by the transglucosylating system with ADP[14C]glucose, UDP[14C]glucose or GDP[14C]glucose as glucosyl donors. The results presented in this paper are the first demonstration of soluble glucosyl transferases with the same glucose donor specificity to that of the particulate starch synthetase. 5. This report presents further evidence in favor of the assumption of a glucoproteic intermediate in alpha-a,4-glucan synthesis initiation.  相似文献   

2.
A macromolecular (1----4)-alpha-D-[14C]glucan-protein complex was synthesized with a rat liver preparation and uridine diphosphate D-[14C]glucose. The size of the complex is contributed by both the protein and the (1----4)-alpha-D-glucosyl-oligomer components. Iodoacetamide treatment did not change the migration properties on Bio-Gel A-50m. Therefore, disulfide bonds linking glucan-protein subunits seem not to be involved. The [14C]glucan-protein, precipitated by diluted trichloroacetic acid, was digested by alpha-amylase, phosphorylase a, and proteases. The extent of proteolysis was greater for a complex having fewer D-glucose units incorporated. After proteolytic digestion of that complex, the labeled fragments behaved on electrophoresis, and ion-exchange and gel chromatography as [14C]glucosylated peptides. These findings support previous conclusions that the primer for liver glycogen synthesis is a protein on which glycogen is built up by covalent attachment.  相似文献   

3.
Previous reports have demonstrated the incorporation of glucose from ADP-glucose into methanol-insoluble and TCA-insoluble fractions in cell extracts of Escherichia coli in the absence of added primer α-glucan. This activity is reduced 6- to 76-fold in cell extracts of three independently isolated glycogen synthase-deficient mutants of E. coli B. Homogeneous preparations of E. coli B glycogen synthase catalyze incorporation of glucose into both methanol- and TCA-insoluble fractions in the absence of added primer. Since glycogen synthase catalyzes these reactions, it is not necessary to propose a protein acceptor glucose or a unique ADP-glucose-glycosyl transferase to catalyze formation of the glucoprotein in E. coli cell extracts to explain glucose incorporation into TCA-insoluble material (R. Barengo et al. (1975) FEBS Lett.53, 274–278). The incorporation of glucose into methanol-and TCA-insoluble fractions is stimulated by 0.25 m citrate and by branching enzyme. Citrate reduces the Km for the primer, glycogen, about 11- to 15-fold. Branching enzyme can also reduce the concentration of primer required for incorporation of glucose into methanol-insoluble material. The simultaneous presence of both 0.25 m citrate and branching enzyme enables the glycogen synthase reaction rate to proceed at 30% the maximal velocity at a primer concentration of 1 μg/ml. Incorporation of glucose into methanol- or TCA-insoluble material in the absence of primer is completely inhibited by adding α-amylase. Furthermore, incorporation into methanol- or TCA-insoluble material is reduced 13- to 16-fold relative to the reaction occurring in the presence of primer when glycogen synthase is pretreated with glucoamylase and α-amylase. Previous results show that homogeneous preparations of glycogen synthase contain glucan. Heat-denatured glucogen synthase can act as a primer for the glycogen phosphorylase and glycogen synthase reactions. Both the TCA- and methanol-insoluble products form I2-glucan complexes with wavelength maxima of about 580–590 nm and 610–615 nm, respectively, suggesting that they are mainly linear chain glucans. The products are completely solubilized with α-amylase. The TCA-insoluble product is not solubilized by pronase treatment. The above results strongly suggest that previous reports on formation of glucoprotein primer for glycogen synthesis or on de novo glycogen synthesis in various similar systems is due to endogenous glucan associated with glycogen synthase rather than formation of glucoprotein which then acts as primer for glycogen synthesis.  相似文献   

4.
5.
An enzymic activity, obtained from Neurospora crassa, catalyzing the incorporation of [14C]glucose from ADP-[14C]glucose into a glucan of the glycogen type, is described. The properties of the ADPglucose: glycogen glucosyltransferase as compared with those of the already known UDP glucose: glycogen glucosyltransferase were studied. The radioactive products obtained with UDP-[14C]glucose or ADP-[14C]glucose released all the radioactivity as maltose after α or β amylase treatment. Glucose 6-phosphate stimulated the synthetase when UDP-[14C]glucose was the substrate but the stimulation was much greater with ADP-[14C]glucose as glucosyl donor. Glucose 6-phosphate plus EGTA gave maximal stimulation. The system was completely dependent on the presence of a ‘primer’ of the α 1 → 4 glucan type.  相似文献   

6.
An enzymic activity, obtained from Neurospora crassa, catalyzing the incorporation of [14C]glucose from ADP-[14C]glucose into a glucan of the glycogen type, is described. The properties of the ADPglucose : glycogen glucosyltransferase as compared with those of the already known UDP glucose : glycogen glucosyltransferase were studied. The radioactive products obtained with UDP-14C]glucose or ADP-[14C]glucose released all the radioactivity as maltose after alpha or beta amylase treatment. Glucose 6-phosphate stimulated the synthetase when UDP-[14C]glucose was the substrate but the stimulation was much greater with ADP-[14C]glucose as glucosyl donor. Glucose 6-phosphate plus EGTA gave maximal stimulation. The system was completely dependent &on the presence of a 'primer' of the alpha 1 leads to 4 glucan type.  相似文献   

7.
A sodium deoxycholate extract containing glucosyltransferase activity was obtained from a particulate preparation from Euglena gracilis. It transferred glucose from UDP-[14C]glucose into material that was precipitated by trichloroacetic acid. This material released beta-(1 leads to 3)-glucan oligosaccharides into solution on incubation with weak acid, weak alkali and beta-(1 leads to 3)-glucosidase. The products of the incubation of the deoxycholate extract with UDP-[14C]glucose were analysed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Radioactive bands were obtained that had the properties of beta-(1 leads to 3)-glucan covalently linked to protein by a bond labile to weak acid. High-molecular-weight material containing a beta-(1 leads to 3)-glucan was also shown to be present by gel filtration. The bond linking glucan to aglycone is possibly a pyrophosphate linkage. It is proposed that in Euglena gracilis beta-(1 leads to 3)-glucan (paramylon) is synthesized on a protein primer.  相似文献   

8.
The formation of L-iduronic acid during biosynthesis of dermatan sulphate has been studied in culture human fibroblasts and in microsomes from the same cells. The cells were incubated with D-[14C]glucose and D-[5-3H]glucose for 72 h. The [14C,3H]dermatan sulphate was hydrolysed and the disaccharides obtained were acetylated and separated by ion-exchange chromatography. The ratio of 3H/14C was 0.36 for N-acetyldermosine and 1.36 N-acetylchondrosine. A microsomal preparation from the fibroblasts was incubated with UDP-D-[5-3H]glucuronic acid, UDP-D-[14C]glucuronic acid, UDP-N-acetyl-D-galactosamine and 3'-phospho-5'-adenylyl sulphate. The polymeric products were separated into nonsulphated and sulphated components which had 3H/14C ratios of 0.51 and 0.20 and contained 9% and 70% of their uronosyl residues in the L-ido-configuration, respectively. Chondroitinase-AC digestion of these polymers liberated all of the remaining 3H activity. Hydrolysis and N-acetylation followed by paper chromatography showed that the L-iduronic acid-containing products were devoid of 3H. The data obtained indicate that the epimerization of D-glucuronosyl to L-iduronosyl residues during biosynthesis of dermatan sulphate involves an abstraction of the C-5 hydrogen of the uronosyl residue.  相似文献   

9.
Human platelets exhibited significant glucosyltransferase activity, that transfer [14C]glucose from UDP-Glc to an endogenous protein acceptor. The enzyme protein:glucosyltransferase responsible for the catalysis was characterized and compared with glycogen:glucosyltransferase. We describe a partial separation of both activities, the ratio of protein:glucosyltransferase/glycogen:glucosyltransferase varied from 7:1 in a crude homogenate of platelets to 36:1 in the Sephadex G-100 column. This procedure failed to separate the protein:glucosyltransferase from its endogenous acceptor. Glucosylation of protein demonstrated dependence with respect to time and both protein and UDP-Glc concentration, and was saturated by very low concentration of donor and acceptor substrates. It was inhibited 76% by 5 mM Mn2+ concentration and was activated 23 and 11% by 5 mM concentrations of Ca2+ and Mg2+, respectively. With respect to glycogen:glucosyltransferase, when the effect of time, protein, and substrate concentration were determined under identical conditions, it did not show the same dependence. At 5 mM concentration, Mn2+, Ca2+, and Mg2+ were activators of the enzyme 43, 80, and 200%, respectively. On the basis of these characteristics, we conclude that the synthesis of glucoprotein and glycogen are catalyzed by two distinct enzymes. Addition of exogenous glycogen (range 0.002-1%) inhibited the protein:glucosyltransferase, whereas at 0.001-0.007% concentration it was acceptor substrate for glycogen:glucosyltransferase activity. At higher concentrations this activity was strongly inhibited. The concentration of glycogen in platelets could play a regulatory role in forming the glucoprotein and the glycogen molecules.  相似文献   

10.
The properties of the enzymes involved in the initiation of glycogen biosynthesis in Escherichia coli were studied. It was found that the enzymic activities which transfer the glycosyl residues from UDPglucose or ADPglucose for the glucoprotein synthesis had differing stabilities upon storage at 4 degrees C. The small amount of glycogen and the saccharide firmly bound to the membrane preparation, were degraded during the storage period. The activity measured in fresh and in stored preparations gave different time dependence curves. The stored preparation had a lag period which could be due to the transfer of the first glucose units to the protein. Both UDPglucose and ADPglucose : protein glucosyltransferases were affected in different ways by detergents. Based on the results presented, it may be concluded that both enzymatic activities are due to different enzymes. Furthermore, both enzymatic activities are different from that which transfers glucose from ADPglucose to glycogen. The following mechanism for the de novo synthesis is suggested. Glycogen in E. coli could be initiated by two different enzymes which transfer glucose to a protein acceptor either from UDPglucose or ADPglucose. Once the saccharide linked to the protein has reached a certain size it is almost exclusively enlarged by another ADPglucose-dependent enzyme. The participation of branching enzyme will produce a polysaccharide with the characteristics of glycogen.  相似文献   

11.
Curtobacterium pusillum contains 11-cyclohexylundecanoic acid as a major component of cellular fatty acids. A trace amount of 13-cyclohexyltridecanoic acid is also present. Fatty acids other than omega-cyclohexyl fatty acids present are 13-methyltetradecanoic, 12-methyltetradecanoic, n-pentadecanoic, 14-methylpentadecanoic, 13-methylpentadecanoic, n-hexadecanoic, 15-methylhexadecanoic, 14-methylhexadecanoic, and n-heptadecanoic acids. The fatty acid synthetase system of this bacterium was studied. Various 14C-labeled precursors were added to the growth medium and the incorporation of radioactivity into cellular fatty acids was analyzed. Sodium [14C]acetate and [14C]glucose were incorporated into almost all species of cellular fatty acids, the incorporation into 11-cyclohexylundecanoic acid being predominant. [14C]Isoleucine was incorporated into 12-methyltetradecanoic and 14-methylhexadecanoic acids: [14C]leucine into 13-methyltetradecanoic and 15-methylhexadecanoic acids; and [14C]valine into 14-methylpentadecanoic acid. [14C]-Shikimic acid was incorporated almost exclusively into omega-cyclohexyl fatty acids. The fatty acid synthetase activity of the crude enzyme preparation of C. pusillum was reconstituted on the addition of acyl carrier protein. This synthetase system required NADPH and preferentially utilized cyclohexanecarbonyl-CoA as a primer. The system was also able to use branched- and straight-chain acyl-CoAs with 4 to 6 carbon atoms effectively as primers but was unable to use acetyl-CoA. However, if acetyl acyl carrier protein was used as the priming substrate, the system produced straight-chain fatty acids. The results imply that the specificity of the initial acyl-CoA:acyl carrier protein acyltransferase dictates the structure of fatty acids synthesized and that the enzymes catalyzing the subsequent chain-elongation reactions do not have the same specificity restriction.  相似文献   

12.
Lactate metabolism in the perfused rat hindlimb.   总被引:2,自引:0,他引:2       下载免费PDF全文
M Shiota  S Golden    J Katz 《The Biochemical journal》1984,222(2):281-292
A preparation of isolated rat hindleg was perfused with a medium consisting of bicarbonate buffer containing Ficoll and fluorocarbon, containing glucose and/or lactate. The leg was electrically prestimulated to deplete partially muscle glycogen. The glucose was labelled uniformly with 14C and with 3H in positions 2, 5 or 6, and lactate uniformly with 14C and with 3H in positions 2 or 3. Glucose carbon was predominantly recovered in glycogen, and to a lesser extent in lactate. The 3H/14C ration in glycogen from [5-3H,U-14C]- and [6-3H,U-14C]-glucose was the same as in glucose. Nearly all the utilized 3H from [2-3H]glucose was recovered as water. Insulin increased glucose uptake and glycogen synthesis 3-fold. When the muscle was perfused with a medium containing 10 mM-glucose and 2 mM-lactate, there was little change in lactate concentration. 14C from lactate was incorporated into glycogen. There was a marked exponential decrease in lactate specific radioactivity, much greater with [3H]- than with [14C]-lactate. The 'apparent turnover' of [U-14C]lactate was 0.28 mumol/min per g of muscle, and those of [2-3H]- and [3-3H]-lactate were both about 0.7 mumol/min per g. With 10 mM-lactate as sole substrate, there was a net uptake of lactate, at a rate of about 0.15 mumol/min per g, and the apparent turnover of [U-14C]lactate was 0.3 mumol/min per g. The apparent turnover of [3H]lactate was 3-5 times greater. When glycogen synthesis was low (no prestimulation, no insulin), the incorporation of lactate carbon into glycogen exceeded that from glucose, but at high rates of glycogen deposition the incorporation of lactate carbon was much less than that of glucose. Lactate incorporation into glycogen was similar in fast-twitch white and fast-twitch red muscle, but was very low in slow-twitch red fibres. We find that (a) pyruvate in muscle is incorporated into glycogen without randomization of carbon, and synthesis is not inhibited by mercaptopicolinate or cycloserine; (b) there is extensive lactate turnover in the absence of net lactate uptake, and there is a large dilution of 14C-labelled lactate from endogenous supply; (c) there is extensive detritiation of [2-3H]- and [3-3H]-lactate in excess of 14C utilization.  相似文献   

13.
Adenosine 5'-diphosphate (ADP)-glucose pyrophosphorylase (ADP-Glc PPase) catalyzes the conversion of glucose 1-phosphate and adenosine 5'-triphosphate to ADP-glucose and pyrophosphate. We present a radioactive assay of this enzyme with a higher signal/noise ratio. After stopping the reaction that uses [14C]glucose 1-phosphate as a substrate, the ADP-[14C]glucose formed as a product is converted to [14C]glycogen by the addition of glycogen synthase and nonradioactive glycogen as primer. The final product is precipitated and washed, and the radioactivity is measured in a scintillation counter. The [14C]glucose 1-phosphate that did not react is easily eliminated during the washes. We have found that this assay produces much lower blanks than previously described radioactive methods based on binding of ADP-[14C]glucose to O-(diethylaminoethyl)-cellulose paper. In addition, we tested the kinetic parameters for the effectors of the Escherichia coli ADP-Glc PPase and both assays yielded identical results. The presented method is more suitable for Km or S(0.5) determinations of ADP-Glc PPases having high apparent affinity for glucose 1-phosphate. It is possible to use a higher specific radioactivity to increase the sensitivity at lower concentrations of [14C]glucose 1-phosphate without compromising the blanks obtained at higher concentrations.  相似文献   

14.
B Christ  K Jungermann 《FEBS letters》1987,221(2):375-380
[14C]Glucose release either from endogenous 14C-prelabelled glycogen or from added 14C-labelled glucose 6-phosphate was measured in filipin-treated, permeabilized hepatocytes in 48 h culture. [14C]Glucose output from prelabelled glycogen was not altered by the addition of 5 mM glucose 6-phosphate to the incubation medium. Conversely, [14C]glucose release from 5 mM labelled glucose 6-phosphate was not influenced by different glycogen concentrations in the cells. Moreover, in the permeabilized cells the anion transport inhibitor DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid) inhibited only the liberation of [14C]glucose from labelled glucose 6-phosphate but not from glycogen. It is therefore concluded that there exist at least 2 separate, mutually non-accessible glucose 6-phosphate pools in cultured rat hepatocytes, one linked to glycogenolysis and the other to gluconeogenesis.  相似文献   

15.
We have characterized a maltodextrin glucosidase, previously described as a maltose-inducible, cytoplasmic enzyme that cleaves p-nitrophenyl-alpha-maltoside in Escherichia coli. The gene encoding the enzyme activity, referred to as malZ, is located at 9.3 min on the chromosomal map. We cloned the gene in a high copy number vector and purified the enzyme. It is a monomer, with an apparent molecular weight of 65,000. The enzyme degrades maltodextrins, ranging from maltotriose to maltoheptaose, to shorter oligosaccharides, the final hydrolysis products being maltose and glucose. We measured the kinetic parameters, Km and Vmax, for the hydrolysis to glucose of the five different substrates. The binding of the substrate is enhanced by increasing the number of glucosyl residues in the maltodextrin. In contrast, the maximum rate of hydrolysis (Vmax) is fastest for maltotriose. To study the mode of action of the enzyme, we quantitatively measured the amount of free glucose liberated from the different maltodextrin substrates after a long incubation. More glucose is liberated from the long dextrins, as compared to the shorter ones, showing that the primary hydrolysis product was glucose, not maltose. Furthermore, [14C]maltotriose, specifically labeled at the reducing end, was hydrolyzed to [14C]glucose and unlabeled maltose. These data demonstrate that the malZ gene product is a maltodextrin glucosidase, liberating glucose from the reducing end of malto-oligosaccharides. The nucleotide sequence of malZ and the deduced amino acid sequence showed that malZ encodes a protein with a molecular weight of 68,960. Homology to glucosidases, alpha-amylases, and pullulanases were observed. Conserved regions thought to represent active sites in dextrin hydrolases were found in the MalZ protein.  相似文献   

16.
Evidence for the glycoprotein nature of retina glycogen   总被引:3,自引:0,他引:3  
Incubation of a bovine retina membrane preparation with micromolar amounts of UDP-[14C]glucose resulted in the incorporation of [14C]glucose into endogenous (1----4)-alpha-glucan, insoluble in trichloroacetic acid, and acid-soluble ethanol-insoluble glycogen. The trichloroacetic-acid-insoluble glucan fraction of retina migrated in 2.6-3% acrylamide gels when subjected to sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) and was rendered acid-soluble by digestion with pronase. The solubility of the acid-insoluble glucan in acidified organic solvent was different from that of amylose or glycogen and similar to membrane proteins and glycoproteins. The glycogen fraction of retina contained 1.5-2.0 micrograms protein/100 micrograms glucose. When this fraction was analyzed by SDS-PAGE only one band, which moved near the top of 3% acrylamide gels, was stained with periodic acid Schiff reagent and Coomassie blue. The protein nature of the Coomassie-blue-stainable material was demonstrated by iodination of the glycogen fraction with [131I]iodide and identification of labeled monoiodotyrosine and diiodotyrosine. The bulk of the label comigrated with carbohydrate near the top of gels in SDS-PAGE and treatment with alpha- amylse decreased the molecular size of both labeled and stainable material. Physical dissociative conditions (7.5 M urea/0.83% SDS/0.83% mercaptoethanol) and the following chemical treatments failed to dissociate the iodinated protein from glycogen: (a) 0.1 M NaOH/0.1 M NaBH4 at room temperature for 24 h; (b) 1 M HCl in methanol at 50 degrees C for 10 min; (c) trifluoroacetic acid at 50 degrees C for 6 min. 131I-labeled glycogenpeptide was isolated after 131I-labeled protein-bound glycogen had been subjected to digestion with papain/pronase and passed through a Sepharose column. The results suggest that at least part of glycogen in bovine retina is firmly combined to protein as a single proteoglycogen molecule. Furthermore some of the proteoglycogen might be present as a trichloroacetic-acid-precipitable proteoglucan owing to its lower glucose content.  相似文献   

17.
Previous reports implicate UDPglucose as an active glucosyl donor for the unprimed reaction and “glucoprotein” formation in glycogen biosynthesis in Escherichia coli. Results presented here indicate that UDPglucose and GDPglucose are glucosyl donors in the primed and unprimed reactions catalyzed by purified E. coli B glycogen synthase at less than 5% the rate observed when ADPglucose is the donor. The unprimed reaction is stimulated by 0.25 m citrate and a high molecular weight product is formed similar to that produced when ADPglucose is the glucosyl donor. Physiological amounts of branching enzyme and high concentrations of glycogen inhibit transfer from UDPglucose and GDPglucose. In addition, transfer from UDPglucose is inhibited by ADPglucose. These results strongly suggest that ADPglucose is the physiological donor in both the primed and unprimed reactions. Furthermore, these and previously reported results suggest that one enzyme is involved in the catalysis of the primed, unprimed, and TCA-insoluble product formation reactions. Antiserum prepared against purified E. coli B glycogen synthase inactivates transfer of glucose from either ADPglucose or UDPglucose in the above reactions catalyzed by E. coli B crude extracts. Purified E. coli B glycogen synthase preparations contain significant amounts of α-glucan primer. Evidence shows that this glucan is not covalently attached to the enzyme. Results presented show that formation of material insoluble in TCA and previously considered to be due to “glucoprotein” formation, is in fact due to the generation of long chain length glucan molecules intrinsically acid insoluble. The data suggest that previous results purported to be de novo synthesis of glycogen are due to glucan associated with the glycogen synthase and not to formation of a “glucoprotein” intermediate which then acts as primer for further oligosaccharide synthesis.  相似文献   

18.
The in vivo experiments have established that the rapid decrease in the glycogen content in the liver of piglets during the first 24 hours after birth is associated with the reduction of the degree of label inclusion from [1-14C]glucose into polysaccharide. The level of label inclusion from [1-14C]pyruvate and [1-14C]lactate into the liver glycogen in new-born piglets is higher than from [1-14C]alanine and [1-14C]glutamic acid. During the days immediately after birth the extension of the pool of glucogenic substrates occurs at the expense of alanine and other amino acids during catabolism of which pyruvate is formed. The degree of label inclusion from the investigated substrates into the liver glycogen of piglets of early age decreases in the series: [1-14C]glucose greater than [1-14C]lactate greater than [1-14C]pyruvate greater than [1-14C]alanine. Glutamic acid in the liver of piglets of early age is not a glucogenic substrate.  相似文献   

19.
Human skin fibroblasts from patients with Type IV glycogen storage disease, in which there is a demonstrable deficiency of glycogen branching enzyme, were shown to be able to synthesize [14C]glycogen containing [14C]glucose at branch points when sonicates containing endogenous glycogen synthase a were incubated with UDP[14C]glucose. The branch point content of the glycogen synthesized by the Type IV cells was essentially the same as that formed by normal cells, but the total synthetic capacity of the Type IV cells was lower. A new assay for the branching enzyme using glycogen synthase as the indicator enzyme has been developed. Using this assay it has been shown that the residual branching enzyme of affected children and of their heterozygote parents is less easily inhibited by an IgG antibody raised in rabbits against the normal human liver enzyme than is the branching enzyme of normal fibroblasts.  相似文献   

20.
Neurospora crassa branching enzyme [EC 2.4.1.18] acted on potato amylopectin or amylose to convert them to highly branched glycogen-type molecules which consisted of unit chains of six glucose units. The enzyme also acted on the amylopectin beta-limit dextrin, indicating that the enzyme acted on internal glucose chains as well as outer chains. By the combined action of N. crassa glycogen synthase [EC 2.4.1.11] and the branching enzyme, a glycogen-type molecule was formed from UDP-glucose. In the presence of primer glycogen, the glucose transfer reaction was accelerated by the addition of branching enzyme. On the other hand, the glucose transfer reaction by glycogen synthase did not occur without primers. When the branching enzyme was added, the glucose transfer occurred after a short time lag. This recovery of the glucose transfer reaction did not occur upon addition of the inactivated branching enzyme. The structure of the product formed by the combined action of the two enzymes was different from that of the intact N. crassa glycogen with respect to the distribution patterns of the unit chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号