共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
《生物化学与生物物理学报:疾病的分子基础》2023,1869(2):166598
Nasopharyngeal carcinoma (NPC) is Epstein-Barr virus (EBV)-associated invasive malignancy. Increasing evidence indicates that epigenetic abnormalities, including DNA methylation, play important roles in the development of NPC. In particular, the EBV principal oncogene, latent membrane protein 1 (LMP1), is considered a key factor in inducing aberrant DNA methylation of several tumour suppressor genes in NPC, although the mechanism remains unclear. Herein, we comprehensively analysed the methylome data of Infinium BeadArray from 51 NPC and 52 normal nasopharyngeal tissues to identify LMP1-inducible methylation genes. Using hierarchical clustering analysis, we classified NPC into the high-methylation, low-methylation, and normal-like subgroups. We defined high-methylation genes as those that were methylated in the high-methylation subgroup only and common methylation genes as those that were methylated in both high- and low-methylation subgroups. Subsequently, we identified 715 LMP1-inducible methylation genes by observing the methylome data of the nasopharyngeal epithelial cell line with or without LMP1 expression. Because high-methylation genes were enriched with LMP1-inducible methylation genes, we extracted 95 high-methylation genes that overlapped with the LMP1-inducible methylation genes. Among them, we identified DERL3 as the most significantly methylated gene affected by LMP1 expression. DERL3 knockdown in cell lines resulted in significantly increased cell proliferation, migration, and invasion. Lower DERL3 expression was more frequently detected in the advanced T-stage NPC than in early T-stage NPC. These results indicate that DERL3 repression by DNA methylation contributes to NPC tumour progression. 相似文献
6.
7.
8.
Nuclear translocation of EGF receptor regulated by Epstein-Barr virus encoded latent membrane protein 1 总被引:3,自引:0,他引:3
TAO Yongguang SONG Xin TAN Yunnian LIN Xiaofeng ZHAO Yan ZENG Liang TANG Min LI Wei WU Qiao & CAO Ya . Cancer Research Institute Xiangya School of Medicine Central South University Changsha China . Key Laboratory of the Ministry of Education for Cell Biology Tumor Cell Engineering School of Life Sciences Xiamen University Xiamen China 《中国科学:生命科学英文版》2004,47(3):258-267
Epstein-Barrvirus(EBV),oneoftheDNAon-cogenicviruses,iscloselyassociatedwiththegenesisofBurkitt抯lymphoma,undifferentiatednasopharyn-gealcarcinoma(NPC),Hodgkin抯disease,gastriccancerand,lungcancer,etc.[1].EBVencodedlatentmembraneprotein1(LMP1)isconsideredtobethemajoroncogenicproteinofEBVencodedproteins.Biologicallyspeaking,LMP1isanintegralmembraneproteincontaining386aminoacids.Thethreedo-mains(CTAR1,CTAR2,CTAR3)intheC-terminusofLMP1havebeenshowntoinitiatethesignalingproc-ess.The… 相似文献
9.
10.
11.
Epstein-Barr virus nuclear antigen 2 transactivates latent membrane protein LMP1. 总被引:13,自引:50,他引:13 下载免费PDF全文
Several lines of evidence are compatible with the hypothesis that Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA-2) or leader protein (EBNA-LP) affects expression of the EBV latent infection membrane protein LMP1. We now demonstrate the following. (i) Acute transfection and expression of EBNA-2 under control of simian virus 40 or Moloney murine leukemia virus promoters resulted in increased LMP1 expression in P3HR-1-infected Burkitt's lymphoma cells and the P3HR-1 or Daudi cell line. (ii) Transfection and expression of EBNA-LP alone had no effect on LMP1 expression and did not act synergistically with EBNA-2 to affect LMP1 expression. (iii) LMP1 expression in Daudi and P3HR-1-infected cells was controlled at the mRNA level, and EBNA-2 expression in Daudi cells increased LMP1 mRNA. (iv) No other EBV genes were required for EBNA-2 transactivation of LMP1 since cotransfection of recombinant EBNA-2 expression vectors and genomic LMP1 DNA fragments enhanced LMP1 expression in the EBV-negative B-lymphoma cell lines BJAB, Louckes, and BL30. (v) An EBNA-2-responsive element was found within the -512 to +40 LMP1 DNA since this DNA linked to a chloramphenicol acetyltransferase reporter gene was transactivated by cotransfection with an EBNA-2 expression vector. (vi) The EBV type 2 EBNA-2 transactivated LMP1 as well as the EBV type 1 EBNA-2. (vii) Two deletions within the EBNA-2 gene which rendered EBV transformation incompetent did not transactivate LMP1, whereas a transformation-competent EBNA-2 deletion mutant did transactivate LMP1. LMP1 is a potent effector of B-lymphocyte activation and can act synergistically with EBNA-2 to induce cellular CD23 gene expression. Thus, EBNA-2 transactivation of LMP1 amplifies the biological impact of EBNA-2 and underscores its central role in EBV-induced growth transformation. 相似文献
12.
To investigate the effect of Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) on human cancer cells, we sought to identify and analyze potential target genes that were differentially expressed in the presence and absence of LMP1. Our cDNA microarray analysis revealed that expression of early growth response gene-1 (Egr-1) was increased by LMP1 expression in MCF7 and Jurkat cells. An NFkappaB inhibitor (SN50) antagonized LMP1-induced enhancement of Egr-1 expression, indicating that LMP1 induced Egr-1 via NFkappaB. Furthermore, three lines of evidence indicated that Egr-1 was required for LMP1-induced cancer cell survival. First, Egr-1 expression enhanced the survival of doxorubicin-treated MCF7 cells. Second, inhibition of Egr-1 expression by siRNA (siEgr-1) effectively suppressed LMP-1-induced survival of MCF7 cells. Third, Egr-1 knockdown decreased LMP1-induced expression of Bfl-1. Similar relationships among EBV infection, Egr-1 and drug resistance were also observed in tissues of peripheral T-cell lymphoma-unspecified (PTCL-u) patients. 相似文献
13.
14.
15.
目的 预测EB病毒潜伏膜蛋白1(Latent Membrane Protein 1,LMPl)的B细胞表位.方法 基于EB病毒基因组序列,采用DNAStar Lasergene软件包中的Protean软件,对LMP1的亲水性,表面可能性,抗原指数及其二级结构中的柔性区域进行分析,并结合吴玉章的抗原指数预测法预测其B细胞表位.结果 B细胞表位最有可能位于潜伏膜蛋白N端第356-358,2-19,249-314区段或其附近,而潜伏膜蛋白N端第185-223区段内或附近也可能存在B细胞表位.结论 用多参数预测EB病毒LMP1的B细胞表位,为鼻咽癌的筛查及抗肿瘤转移靶向治疗的分子免疫学研究奠定基础. 相似文献
16.
Interferon regulatory factor 7 mediates activation of Tap-2 by Epstein-Barr virus latent membrane protein 1 下载免费PDF全文
Transporter associated with antigen processing 2 (Tap-2) is responsible for ATP-dependent transport of peptides from the cytosol to the endoplasmic reticulum, where peptides bind to newly synthesized human leukocyte antigen (HLA) class I molecules, which are essential for cellular immune responses. Epstein-Barr virus (EBV) latent membrane protein 1 (LMP-1) has been shown to induce the expression of Tap-2. In this study, the induction of endogenous Tap-2 by LMP-1 is shown to be associated with and requires the expression of interferon regulatory factor 7 (IRF-7). In DG75 Burkitt's lymphoma (BL) cells, in which LMP-1 induces the expression of IRF-7, LMP-1 induced endogenous Tap-2, and ectopic expression of IRF-7 could enhance the induction. In Akata BL cells, in which LMP-1 could not induce IRF-7, LMP-1 could not induce Tap-2. Addition of IRF-7, which complements the defect in Akata cells, could stimulate the expression of Tap-2. Furthermore, LMP-1 and IRF-7A but not other IRF-7 splicing variants could activate endogenous Tap-2. A Tap-2 promoter reporter construct could be activated by the overexpression of IRF-7A. The activation could be specifically enhanced by LMP-1 and was dependent on an intact interferon-stimulated response element (ISRE) present in the Tap-2 promoter. Also, IRF-7 can bind to the Tap-2 promoter under physiological conditions in vivo, as shown by formaldehyde cross-linking, as well as to the Tap-2 ISRE in vitro, as shown by gel mobility shift assays. Furthermore, LMP-1 facilitates the phosphorylation and nuclear translocation of IRF-7. These data point to the role of IRF-7 as a secondary mediator of LMP-1-activated signal transduction for Tap-2 as follows: LMP-1 stimulates the expression of IRF-7 and facilitates its phosphorylation and nuclear translocation, and then the activated IRF-7 mediates the activation of the cellular Tap-2 gene. The induction of Tap-2 by IRF-7 and LMP-1 may have an important implication for the immune response to EBV and its persistence in vivo. 相似文献
17.
Epstein-Barr virus latent membrane protein 2A regulates c-Jun protein through extracellular signal-regulated kinase 总被引:2,自引:0,他引:2 下载免费PDF全文
Epstein-Barr virus (EBV) latent membrane protein 2A (LMP2A) is widely expressed in both EBV-infected cells and EBV-associated malignancies. However, the function of LMP2A is still veiled. In this study, LMP2A was found to induce the kinase activities of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase/stress-activated protein kinase JNK/SAPK. Furthermore, the downstream effector c-Jun showed hyperphosphorylation under LMP2A expression. The phosphorylation could be inhibited by the ERK pathway inhibitor PD98059, indicating that ERK may contribute to the phosphorylation of c-Jun in LMP2A-expressing cells. The impact on c-Jun phosphorylation by mitogen-activated protein kinase (MAPK) is suggested to increase c-Jun protein stability, and this was also observed in LMP2A-expressing cells by a protein synthesis inhibition assay. Moreover, LMP2A-induced cell invasion was inhibited in the presence of the ERK pathway inhibitor. Taken together, we suggest that LMP2A may exploit MAPK kinases and affect both the phosphorylation and stability of c-Jun protein. Additionally, LMP2A may thereby promote the mobility of the cells. In doing so, it may enhance the mobility of EBV-infected cells and contribute to the metastatic process of malignant cells. Here we demonstrated the first evidence of LMP2A-induced migration and the underlying pathways accounting for it. 相似文献
18.
Orientation and patching of the latent infection membrane protein encoded by Epstein-Barr virus. 总被引:23,自引:26,他引:23 下载免费PDF全文
Epstein-Barr virus is known to encode three nuclear proteins and one membrane protein (LMP) in latently infected growth-transformed cells. Studies of the plasma membrane localization and orientation of LMP by protease digestion of live cells and by immunofluorescence indicated the following. (i) At least 30% of LMP is in the plasma membrane, as opposed to other cytoplasmic membranes. (ii) A small LMP domain which corresponds to a previously proposed outer reverse turn between the first two transmembrane domains is exposed on the outer cell surface (and two other proposed outer-reverse-turn domains may be exposed), whereas all or almost all of the rest of the protein is not exposed on the outer cell surface. (iii) LMP is present in patches in the cell plasma membrane. 相似文献
19.
Wang X Saludes JP Zhao TX Csakai A Fiorini Z Chavez SA Li J Lee GI Varga K Yin H 《Biochimica et biophysica acta》2012,1818(9):2282-2289
The lateral transmembrane protein-protein interaction has been regarded as "undruggable" despite its importance in many biological processes. The homo-trimerization of transmembrane domain 5 (TMD-5) of latent membrane protein 1 (LMP-1) is critical for the constitutive oncogenic activation of the Epstein-Barr virus (EBV). Herein, we report a small molecule agent, NSC 259242 (compound 1), to be a TMD-5 self-association disruptor. Both the positively charged acetimidamide functional groups and the stilbene backbone of compound 1 are essential for its inhibitory activity. Furthermore, cell-based assays revealed that compound 1 inhibits full-length LMP-1 signaling in EBV infected B cells. These studies demonstrated a new strategy for identifying small molecule disruptors for investigating transmembrane protein-protein interactions. 相似文献
20.
The latent membrane protein 1 (LMP1) of Epstein-Barr virus causes cellular transformation and activates several intracellular signals, including NF-kappaB and c-Jun N-terminal kinase. Using yeast two-hybrid screening with the LMP1 C-terminal sequence as bait, we demonstrate that BRAM1 (bone morphogenetic protein receptor-associated molecule 1) is an LMP1-interacting protein. BRAM1 associates with LMP1, both in vitro and in vivo, as revealed by confocal microscopy, glutathione S-transferase pull-down, and co-immunoprecipitation assays. This association mainly involves the C-terminal half of BRAM1 comprising the MYND domain and the CTAR2 region of LMP1, which is critical in LMP1-mediated signaling pathways. We show that BRAM1 interferes with LMP1-mediated NF-kappaB activation but not the JNK signaling pathway. Because the CTAR2 region interacts with the tumor necrosis factor (TNF-alpha receptor-associated death domain protein, it is interesting to find that BRAM1 also interferes with NF-kappaB activation mediated by TNF-alpha. BRAM1 interferes LMP1-mediated and TNF-alpha-induced NF-kappaB activation by targeting IkappaBalpha molecules. Moreover, BRAM1 inhibits the resistance of LMP1-expressing cells to TNF-alpha-induced cytotoxicity. We therefore propose that the BRAM1 molecule associates with LMP1 and functions as a negative regulator of LMP1-mediated biological functions. 相似文献