首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
This investigation concerns the combined effects of removal and readdition of insulin and inhibition of protein and RNA synthesis on the stability of insulin-induced mRNAs during and after differentiation of rat L6A1 myoblast cells in culture. Addition of insulin accompanying the withdrawal of the mitogenic stimulus of serum to myoblasts caused an 80-fold increase in creatine phosphokinase (CK) activity which was largely accounted for by a similar increase in the amount of CK mRNA. The latter was co-ordinately induced with myosin heavy chain (MHC) mRNA but not malic enzyme (ME) mRNA. Measurements of steady-state levels of mRNA showed that removal of insulin caused CK mRNA, but not MHC mRNA, to be rapidly degraded, the effect being reversed upon readdition of the hormone. Direct measurement of 3H-labeled CK, MHC and beta-actin mRNAs confirmed the selective stabilization and destabilization of CK mRNA by the hormone. Conditions were established for a time-window during which cycloheximide (Cx) produced a virtually total arrest of protein synthesis in myotubes that was reversible upon removal of the inhibitor. Under these conditions, Cx selectively prevented the degradation of CK mRNA in a reversible manner. Actinomycin D (Act D) also arrested the loss of this mRNA. Under the same conditions of mRNA stabilization during de-induction, a superinduction of CK mRNA, but not MHC mRNA, was observed if the two inhibitors were added during induction in the continuous presence of insulin. We conclude that a short-lived protein(s), encoded by a short-lived mRNA(s), selectively regulates the stability of reversibly inducible mRNA.  相似文献   

4.
5.
L cells were infected with Mengo virus in the presence of varying concentrations of protein synthesis inhibitors (azetidine-2-carboxylic acid, p-fluorophenylalanine, puromycin), and examined with respect to the effects of the inhibitors on several features of virus-induced cell injury. The virus-specific events in the cells could be dissociated into three groups, based on their sensitivity to the inhibitors: (i) viral ribonucleic acid (RNA) synthesis, bulk viral protein synthesis, and infectious particle production, all of which were prevented by low inhibitor concentrations; (ii) the cytopathic effect (CPE) and stimulation of phosphatidylcholine synthesis, which were sensitive to intermediate concentrations of the inhibitors; and (iii) the virus-induced inhibitions of host RNA and protein synthesis, which were resistart to the inhibitors of protein synthesis except at very high concentrations. It is concluded from this that the virus-induced CPE and stimulation of phosphatidylcholine synthesis are not consequences of the inhibition of cellular RNA or protein synthesis. Analysis of the virus-specific protein and RNA synthesized at several concentrations of azetidine and puromycin suggests that the CPE may be induced by a viral protein precursor. Virus-induced inhibition of host RNA and protein synthesis occurred at azetidine concentrations which blocked the synthesis of over 99.7% of the total viral RNA and over 99% of the viral double-stranded RNA (dsRNA). Calculations show that this would correspond to less than 150 dsRNA molecules per infected cell, resulting in a dsRNA-polysome ratio of less than 1:1,000; this indicates that host protein synthesis cannot be inhibited by an irreversible binding of dsRNA to polysomes.  相似文献   

6.
Starvation for amino acids initiates the developmental cycle in the cellular slime mold, Dictyostelium discoideum. Upon starvation one of the earliest developmental events is the selective loss of the ribosomal protein mRNAs from polysomes. This loss depends upon sequences in the 5' non-translated leader of the ribosomal protein (r-protein) mRNAs. Here evidence is presented which indicates that those cells which will become prestalk cells express the ribosomal protein genes during development under starvation conditions. Cells which enter the prespore pathway shut off r-protein synthesis. The promoter and 5' non-translated leader sequences from two ribosomal protein genes, the rp-L11 and the rp-S9 genes, are fused to the Escherichia coli beta-galactosidase reporter gene. While beta-galactosidase enzyme activity is detected in situ in most growing cells, by 15 h of development beta-galactosidase enzyme activity is largely lost from the prespore cells although strong beta-galactosidase enzyme activity is present in the prestalk cells. These observations suggest the possibility that the ribosomal protein mRNAs are excluded from polysomes in a cell-type-specific manner.  相似文献   

7.
8.
9.
10.
11.
12.
The effect of inhibiting DNA synthesis on the concentration of the alpha-histone mRNA and the late histone mRNAs in sea urchin embryos was measured. The alpha-histone mRNA concentrations did not change, while the late histone mRNA concentrations were rapidly reduced at the three developmental stages (morula, blastula, and mesenchyme blastula) tested. The rapid degradation of the late histone mRNAs was prevented when protein synthesis was inhibited.  相似文献   

13.
Flagellar formation in the true slime mold,Physarum polycephalum, involves a sequence of events during which amoebae are changed into flagellate cells. In the present study a series of inhibitors thought to inhibit RNA and protein synthesis and microtubule assembly were added in an attempt to characterize the metabolic processes associated with this amoebo-flagellate transformation. Proflavin (inhibitor of cellular RNA synthesis), puromycin, cycloheximide and streptomycin (inhibitors of protein synthesis), blocked the transformation; however, actinomycin D (inhibitor of DNA-dependent RNA synthesis) did not block this transformation. On the other hand, 2-mercaptoethanol and dithiothreitol did block flagella formation, but even high concentrations of colchicine failed to have such an effect. Flagellate formation was more strongly inhibited by inhibitors of oxidative phosphorylation than by other respiratory inhibitors; this suggests that oxidative phosphorylation takes part in the energy metabolism of this transformation.  相似文献   

14.
Treatment of mouse L929 cells with mouse interferon (IFN) lowered the yield of vesicular stomatitis virus (VSV) in a dose-dependent manner. Accumulation of viral proteins was severely inhibited in IFN-treated cells, whereas cellular protein synthesis was not, indicating that the virus-induced shutoff of cellular protein synthesis was prevented by IFN. In order to identify the major target of IFN action precisely, the effect of IFN treatment on the synthesis of viral RNAs and proteins at various stages during the course of viral replication was examined. Accumulation of viral RNAs late in infection was inhibited, as was the case with viral proteins, but the synthesis of leader RNA and mRNAs early in infection was not significantly inhibited by treatment with a moderate dose of IFN. On the other hand, viral protein synthesis at an early stage of infection was strongly inhibited by IFN. The results indicate that the major target reaction of antiviral action of IFN against VSV multiplication is the translation of viral mRNA.  相似文献   

15.
When cultured fibroblasts are deprived of serum, the degradation of long-lived proteins and RNA increases, the cells stop proliferating, and they decrease in size. To determine the role of the increased protein catabolism in these responses, we studied the effects of inhibitors of intralysosomal proteolysis in Balb/c 3T3 cells. When these cells were placed in serum-deficient medium (0.5% serum), the rate of degradation of long-lived proteins increased about twofold within 30 min. This increase was reduced by 50-70% with inhibitors of lysosomal thiol proteases (Ep475 and leupeptin) or agents that raise intralysosomal pH (chloroquine and NH4Cl). By contrast, these compounds had little or no effect on protein degradation in cells growing in 10% serum. Thus, in accord with prior studies, lysosomes appear to be the site of the increased proteolysis after serum deprivation. When 3T3 cells were deprived of serum for 24-48 hours, the rate of protein synthesis and the content of protein and RNA and cell volume decreased two- to fourfold. The protease inhibitor, Ep475, reduced this decrease in the rate of protein synthesis and the loss of cell protein and RNA. Cells deprived of serum and treated with Ep475 for 24-48 hours had about twice the rate of protein synthesis and two- to fourfold higher levels of protein and RNA than control cells deprived of serum. The Ep475-treated cells were also about 30% larger than the untreated cells. Thus, the protease-inhibitor prevented much of the atrophy induced by serum deprivation. The serum-deprived fibroblasts also stopped proliferating and accumulated in the G1 phase of the cell cycle. The cells treated with Ep475 accumulated in G1 in a manner identical to untreated serum-deprived cells. Other agents which inhibited protein breakdown in serum-deprived cells also did not prevent the arrest of cell proliferation. Thus the enhancement of proteolysis during serum deprivation appears necessary for the decrease in size and protein synthesis, but probably not for the cessation of cell proliferation. When cells deprived of serum in the presence or absence of Ep475 were stimulated to proliferate by the readdition of serum, the larger Ep475-treated cells began DNA synthesis 1-2 hours later than the smaller untreated cells. Thus, after treatment with Ep475, the rate of cell cycle transit following serum stimulation was not proportional to the cell's size, protein, or RNA content, or rate of protein synthesis.  相似文献   

16.
The role of protein kinase C (PKC) in the control of prostaglandin production by the human amnion was studied. Amnion membranes delivered spontaneously at term were minced and treated with phorbol esters, protein kinase inhibitors, cycloheximide, and actinomycin D; prostaglandin E2 (PGE2) output then was determined. Untreated tissue produced 3.97 +/- 1.13 ng PGE2/micrograms DNA/14 h (mean +/- SEM, n = 19). Phorbol dibutyrate and 12-O-tetradecanoylphorbol-13-acetate (TPA) stimulated PGE2 output up to 20-fold in a concentration-dependent manner with potencies corresponding to their efficacy as PKC activators. Four-beta-phorbol and 4-methoxy-TPA, which do not stimulate PKC, did not affect PGE2 output. Stimulation by TPA was blocked by staurosporine (IC50 = 57 nM) and H7; however, these PKC inhibitors did not decrease basal prostaglandin production. Cycloheximide inhibited basal and TPA-promoted PGE2 production and amino acid incorporation. Actinomycin D abolished TPA stimulation without decreasing unstimulated prostaglandin synthesis. These results show that amnion PGE2 production after labor is not maintained by PKC action, but PKC activation in this tissue causes a protein synthesis-dependent and RNA synthesis-dependent increase of PGE2 output. However, basal PGE2 production is dependent upon protein synthesis which, presumably, utilizes pre-existing mRNAs.  相似文献   

17.
18.
mTOR (mammalian target of rapamycin) forms two distinct types of complex, mTORC (mTOR complex) 1 and 2. Rapamycin inhibits some of the functions of mTORC1, whereas newly developed mTOR kinase inhibitors interfere with the actions of both types of complex. We have explored the effects of rapamycin and mTOR kinase inhibitors on general protein synthesis and, using a new stable isotope-labelling method, the synthesis of specific proteins. In HeLa cells, rapamycin only had a modest effect on total protein synthesis, whereas mTOR kinase inhibitors decreased protein synthesis by approx. 30%. This does not seem to be due to the ability of mTOR kinase inhibitors to block the binding of eIFs (eukaryotic initiation factors) eIF4G and eIF4E. Analysis of the effects of the inhibitors on the synthesis of specific proteins showed a spectrum of behaviours. As expected, synthesis of proteins encoded by mRNAs that contain a 5'-TOP (5'-terminal oligopyrimidine tract) was impaired by rapamycin, but more strongly by mTOR kinase inhibition. Several proteins not known to be encoded by 5'-TOP mRNAs also showed similar behaviour. Synthesis of proteins encoded by 'non-TOP' mRNAs was less inhibited by mTOR kinase inhibitors and especially by rapamycin. The implications of our findings are discussed.  相似文献   

19.
1. When Tetrahymena were deprived of nutrients 50% of the polysomes disaggregated within 20 min and 20% of the total RNA broke down in 2 h. Ribosomal RNA accounted for 75% of the RNA breakdown. 2. RNA labelled by a long incubation with [14C]uridine was stable in growing cells and in the presence of actinomycin D, but broke down at the same rate as bulk RNA in starved cells. 3. The following substances inhibited the loss of RNA during starvation: cycloheximide (which inhibited both polysome disaggregation and protein synthesis), inhibitors of energy metabolism and puromycin (all of which caused polysome disaggregation and inhibited protein synthesis), and chloroquine and 7-amino-1-chloro-3-L-tosylamidoheptan-2-one ('TLCK') (neither of which affected polysomes or protein synthesis). 4. Starvation appears to activate a ribosome degradation mechanism that may involve lysosomal and non-lysosomal enzymes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号