首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Formyl peptide receptor (FPR) and C5a receptor (C5aR) are chemoattractant G protein-coupled receptors (GPCRs) involved in the innate immune response against bacterial infections and tissue injury. Like other GPCRs, they recruit beta-arrestin1/2 to the plasma membrane and activate the extracellular signal-regulated kinases 1 and 2 (ERK1/2). Previous studies with several GPCRs have suggested that beta-arrestins play an important role as signal transducers by scaffolding signaling molecules such as ERK1/2. This function of the beta-arrestins was not discovered until several years after their role in desensitization and endocytosis had been reported. In this study, we investigated the role of the beta-arrestins in the activation of ERK1/2 and receptor endocytosis. We took advantage of previously described mutants of FPR that have defects in G(i) coupling or beta-arrestin recruitment. The results obtained with the mutant FPRs, as well as experiments using an inhibitor of G(i) and cells overexpressing beta-arrestin2, showed that activation of ERK1/2 takes place through G(i) and is not affected by beta-arrestins. However, overexpression of beta-arrestin2 does enhance FPR sequestration from the cell surface, suggesting a role in desensitization, as shown for many other GPCRs. Experiments with CHO C5aR cells showed similar sensitivity to the G(i) inhibitor as CHO FPR cells, suggesting that the predominant activation of ERK1/2 through G protein may be a common characteristic among chemoattractant receptors.  相似文献   

4.
5.
6.
beta-Arrestins are multifunctional proteins identified on the basis of their ability to bind and uncouple G protein-coupled receptors (GPCR) from heterotrimeric G proteins. In addition, beta-arrestins play a central role in mediating GPCR endocytosis, a key regulatory step in receptor resensitization. In this study, we visualize the intracellular trafficking of beta-arrestin2 in response to activation of several distinct GPCRs including the beta2-adrenergic receptor (beta2AR), angiotensin II type 1A receptor (AT1AR), dopamine D1A receptor (D1AR), endothelin type A receptor (ETAR), and neurotensin receptor (NTR). Our results reveal that in response to beta2AR activation, beta-arrestin2 translocation to the plasma membrane shares the same pharmacological profile as described for receptor activation and sequestration, consistent with a role for beta-arrestin as the agonist-driven switch initiating receptor endocytosis. Whereas redistributed beta-arrestins are confined to the periphery of cells and do not traffic along with activated beta2AR, D1AR, and ETAR in endocytic vesicles, activation of AT1AR and NTR triggers a clear time-dependent redistribution of beta-arrestins to intracellular vesicular compartments where they colocalize with internalized receptors. Activation of a chimeric AT1AR with the beta2AR carboxyl-terminal tail results in a beta-arrestin membrane localization pattern similar to that observed in response to beta2AR activation. In contrast, the corresponding chimeric beta2AR with the AT1AR carboxyl-terminal tail gains the ability to translocate beta-arrestin to intracellular vesicles. These results demonstrate that the cellular trafficking of beta-arrestin proteins is differentially regulated by the activation of distinct GPCRs. Furthermore, they suggest that the carboxyl-tail of the receptors might be involved in determining the stability of receptor/betaarrestin complexes and cellular distribution of beta-arrestins.  相似文献   

7.
beta-arrestins (1 and 2) are widely expressed cytosolic proteins that play central roles in G protein-coupled receptor signaling. beta-arrestin1 is also recruited to the insulin-like growth factor 1 (IGF-1) receptor, a receptor tyrosine kinase, upon agonist binding. Here we report that, in response to IGF-1 stimulation, beta-arrestin1 mediates activation of phosphatidylinositol 3-kinase in a pathway that leads to the subsequent activation of Akt and anti-apoptosis. This process is independent of both Gi and ERK activity. The pathway fails in mouse embryo fibroblasts lacking both beta-arrestins and is restored by stable transfection of beta-arrestin1. Remarkably, this pathway is insensitive to chemical inhibition of IGF-1 receptor tyrosine kinase activity. These results suggest that, in addition to their roles in G protein-coupled receptor signaling, beta-arrestins couple the IGF-1 receptor tyrosine kinase to the phosphatidylinositol 3-kinase system and suggest that this mechanism is operative independently of the tyrosine kinase activity of the receptor.  相似文献   

8.
The N-formyl peptide receptor-like 1 (FPRL1) is a G protein-coupled receptor (GPCR) that transmits intracellular signals in response to a variety of agonists, many of them being clearly implicated in human pathology. beta-arrestins are adaptor proteins that uncouple GPCRs from G protein and regulate receptor internalization. They can also function as signal transducers through the scaffolding of signaling molecules, such as components of the extracellular signal-regulated kinase (ERK) cascade. We investigated the role of beta-arrestins in ligand-induced FPRL1 internalization and signaling. In HEK293 cells expressing FPRL1, fluorescence microscopy revealed that agonist-stimulated FPRL1 remained co-localized with beta-arrestins during endocytosis. Internalization of FPRL1, expressed in a mouse embryonic fibroblast (MEF) cell line lacking endogenous beta-arrestins, was highly compromised. This distinguishes FPRL1 from the prototypical formyl peptide receptor FPR that is efficiently internalized in the absence of beta-arrestins. In both HEK293 and MEF cells, FPRL1-mediated ERK1/2 activation was a rapid and transient event. The kinetics and extent of ERK1/2 activation were not significantly modified by beta-arrestin overexpression. The pattern of FPRL1-mediated ERK1/2 activation was similar whether cells express or not beta-arrestins. Furthermore, treatment of the FPRL1 expressing cells with pertussis toxin inhibited ERK1/2 activation in MEF and in HEK293 cells. These results led us to conclude that activation of ERK1/2 mediated by FPRL1 occurs primarily through G protein signaling. Since beta-arrestin-mediated signaling has been observed essentially for receptors coupled to G proteins other than G(i), this may be a characteristic of G(i) protein-coupled chemoattractant receptors.  相似文献   

9.
Classically, the FSH receptor (FSH-R) mediates its effects through coupling to guanine nucleotide-binding protein alpha S subunit (Galpha(s)) and activation of the cAMP/protein kinase A (PKA) signaling pathway. beta-Arrestins are rapidly recruited to the FSH-activated receptor and play key roles in its desensitization and internalization. Here, we show that the FSH-R expressed in HEK 293 cells activated ERK by two temporally distinct pathways dependent, respectively, on Galpha(s)/PKA and beta-arrestins. Galpha(s)/PKA-dependent ERK activation was rapid, transient, and blocked by H89 (a PKA inhibitor), but it was insensitive to small interfering RNA-mediated depletion of beta-arrestins. beta-Arrestin-dependent ERK activation was slower but more sustained and was insensitive to H89. We identified five Ser/Thr residues in the C terminus of the receptor (638-644) as a major phosphorylation site. Mutation of these residues into Ala (5A FSH-R) significantly reduced the stability of FSH-induced beta-arrestin 1 and 2 interaction when compared with the wild-type receptor. As expected, the 5A FSH-R-mediated cAMP accumulation was enhanced, and its internalization was reduced. In striking contrast, the ability of the 5A FSH-R to activate ERK via the beta-arrestin-dependent pathway was increased. G protein-coupled receptor kinase 5 (GRK5) and GRK6 were required for beta-arrestin-dependent ERK activation by both the wild-type and 5A FSH-R. By contrast, GRK2 depletion enhanced ERK activation by the wild-type FSH-R but not by the 5A FSH-R. In conclusion, we demonstrate the existence of a beta-arrestin-dependent, GRK-regulated mechanism for ERK activation by the FSH-R. A phosphorylation cluster in the C terminus of the FSH-R, identified as a site of beta-arrestin recruitment, positively regulated both desensitization and internalization but negatively regulated beta-arrestin-dependent ERK activation.  相似文献   

10.
11.
Beta-arrestin-mediated signaling regulates protein synthesis   总被引:1,自引:0,他引:1  
Seven transmembrane receptors (7TMRs) exert strong regulatory influences on virtually all physiological processes. Although it is historically assumed that heterotrimeric G proteins mediate these actions, there is a newer appreciation that beta-arrestins, originally thought only to desensitize G protein signaling, also serve as independent receptor signal transducers. Recently, we found that activation of ERK1/2 by the angiotensin receptor occurs via both of these distinct pathways. In this work, we explore the physiological consequences of beta-arrestin ERK1/2 signaling and delineate a pathway that regulates mRNA translation and protein synthesis via Mnk1, a protein that both physically interacts with and is activated by beta-arrestins. We show that beta-arrestin-dependent activation of ERK1/2, Mnk1, and eIF4E are responsible for increasing translation rates in both human embryonic kidney 293 and rat vascular smooth muscle cells. This novel demonstration that beta-arrestins regulate protein synthesis reveals that the spectrum of beta-arrestin-mediated signaling events is broader than previously imagined.  相似文献   

12.
The beta-arrestins, a small family of G protein-coupled receptor (GPCR)-binding proteins involved in receptor desensitization, have been shown to bind extracellular signal-regulated kinases 1 and 2 (ERK1/2) and function as scaffolds for GPCR-stimulated ERK1/2 activation. To better understand the mechanism of beta-arrestin-mediated ERK1/2 activation, we compared ERK1/2 activation by the wild-type neurokinin 1 (NK1) receptor with a chimeric NK1 receptor having beta-arrestin1 fused to the receptor C terminus (NK1-betaArr1). The NK1 receptor couples to both G(s) and G(q/11), resides on the plasma membrane, and mediates rapid ERK1/2 activation and nuclear translocation in response to neurokinin A. In contrast, NK1-betaArr1 is a G protein-uncoupled "constitutively desensitized" receptor that resides almost entirely in an intracellular endosomal compartment. Despite its inability to respond to neurokinin A, we found that NK1-betaArr1 expression caused robust constitutive activation of cytosolic ERK1/2 and that endogenous Raf, MEK1/2, and ERK1/2 coprecipitated in a complex with NK1-betaArr1. While agonist-dependent ERK1/2 activation by the NK1 receptor was independent of protein kinase A (PKA) or PKC activity, NK1-betaArr1-mediated ERK1/2 activation was completely inhibited when basal PKA and PKC activity were blocked. In addition, the rate of ERK1/2 dephosphorylation was slowed in NK1-betaArr1-expressing cells, suggesting that beta-arrestin-bound ERK1/2 is protected from mitogen-activated protein kinase phosphatase activity. These data suggest that beta-arrestin binding to GPCRs nucleates the formation of a stable "signalsome" that functions as a passive scaffold for the ERK1/2 cascade while confining ERK1/2 activity to an extranuclear compartment.  相似文献   

13.
Accumulating evidence indicates that the beta-arrestins act as scaffold molecules that couple G-protein-coupled receptors to mitogen-activated protein (MAP) kinase signaling pathways. Recently, we identified the c-Jun N-terminal kinase 3 (JNK3) as a beta-arrestin2-interacting protein in yeast-two hybrid and co-immunoprecipitation studies. Beta-arrestin2 acts as a scaffold to enhance signaling to JNK3 stimulated by overexpression of the MAP3 kinase ASK1 or by agonist activation of the angiotensin 1A receptor. Whereas beta-arrestin2 is a very strong activator of JNK3 signaling, beta-arrestin1 is very weak in this regard. The data also indicate that the specific step enhanced by beta-arrestin2 involves phosphorylation of JNK3 by the MAP2 kinase MKK4. We reasoned that defining the region (or domain) in beta-arrestin2 responsible for high level JNK3 activation would provide insight into the mechanism by which beta-arrestin2 enhances the activity of this signaling pathway. Using chimeric beta-arrestins, we have determined that sequences in the carboxyl-terminal region of beta-arrestin2 are important for the enhancement of JNK3 phosphorylation. More detailed analysis of the carboxyl-terminal domains of the beta-arrestins indicated that beta-arrestin2, but not beta-arrestin1, contains a sequence (RRSLHL) highly homologous to the conserved docking motif present in many MAP kinase-binding proteins. Replacement of the beta-arrestin2 RRS residues with the corresponding KP residues present in beta-arrestin1 dramatically reduced both JNK3 interaction and enhancement of JNK3 phosphorylation. Conversely, replacement of the KP residues in beta-arrestin1 with RRS significantly increased both JNK3 binding and enhancement of JNK3 phosphorylation. These results delineate a mechanism by which beta-arrestin2 functions as a scaffold protein in the JNK3 signaling pathway and implicate the conserved docking site in beta-arrestin2 as an important factor in binding JNK3 and stimulating the phosphorylation of JNK3 by MKK4.  相似文献   

14.
Physiological effects of beta adrenergic receptor (beta2AR) stimulation have been classically shown to result from G(s)-dependent adenylyl cyclase activation. Here we demonstrate a novel signaling mechanism wherein beta-arrestins mediate beta2AR signaling to extracellular-signal regulated kinases 1/2 (ERK 1/2) independent of G protein activation. Activation of ERK1/2 by the beta2AR expressed in HEK-293 cells was resolved into two components dependent, respectively, on G(s)-G(i)/protein kinase A (PKA) or beta-arrestins. G protein-dependent activity was rapid, peaking within 2-5 min, was quite transient, was blocked by pertussis toxin (G(i) inhibitor) and H-89 (PKA inhibitor), and was insensitive to depletion of endogenous beta-arrestins by siRNA. beta-Arrestin-dependent activation was slower in onset (peak 5-10 min), less robust, but more sustained and showed little decrement over 30 min. It was insensitive to pertussis toxin and H-89 and sensitive to depletion of either beta-arrestin1 or -2 by small interfering RNA. In G(s) knock-out mouse embryonic fibroblasts, wild-type beta2AR recruited beta-arrestin2-green fluorescent protein and activated pertussis toxin-insensitive ERK1/2. Furthermore, a novel beta2AR mutant (beta2AR(T68F,Y132G,Y219A) or beta2AR(TYY)), rationally designed based on Evolutionary Trace analysis, was incapable of G protein activation but could recruit beta-arrestins, undergo beta-arrestin-dependent internalization, and activate beta-arrestin-dependent ERK. Interestingly, overexpression of GRK5 or -6 increased mutant receptor phosphorylation and beta-arrestin recruitment, led to the formation of stable receptor-beta-arrestin complexes on endosomes, and increased agonist-stimulated phospho-ERK1/2. In contrast, GRK2, membrane translocation of which requires Gbetagamma release upon G protein activation, was ineffective unless it was constitutively targeted to the plasma membrane by a prenylation signal (CAAX). These findings demonstrate that the beta2AR can signal to ERK via a GRK5/6-beta-arrestin-dependent pathway, which is independent of G protein coupling.  相似文献   

15.
beta-Arrestins are multifunctional adaptor proteins that regulate seven transmembrane-spanning receptor (7TMR) desensitization and internalization and also initiate alternative signaling pathways. Studies have shown that beta-arrestins undergo a conformational change upon interaction with agonist-occupied, phosphorylated 7TMRs. Although conformational changes have been reported for visual arrestin and beta-arrestin2, these studies are not representative of conformational changes in beta-arrestin1. Accordingly, in this study, we determine conformational changes in beta-arrestin1 using limited tryptic proteolysis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis in the presence of a phosphopeptide derived from the C terminus of the V(2) vasopressin receptor (V(2)Rpp) or the corresponding unphosphorylated peptide (V(2)Rnp). V(2)Rpp binds specifically to beta-arrestin1 causing significant conformational changes, whereas V(2)Rnp does not alter the conformation of beta-arrestin1. Upon V(2)Rpp binding, we show that the previously shielded Arg(393) becomes accessible, which indicates release of the C terminus. Moreover, we show that Arg(285) becomes more accessible, and this residue is located in a region of beta-arrestin1 responsible for stabilization of its polar core. These two findings demonstrate "activation" of beta-arrestin1, and we also show a functional consequence of the release of the C terminus of beta-arrestin1 by enhanced clathrin binding. In addition, we show marked protection of the N-domain of beta-arrestin1 in the presence of V(2)Rpp, which is consistent with previous studies suggesting the N-domain is responsible for recognizing phosphates in 7TMRs. A striking difference in conformational changes is observed in beta-arrestin1 when compared with beta-arrestin2, namely the flexibility of the interdomain hinge region. This study represents the first direct evidence that the "receptor-bound" conformations of beta-arrestins1 and 2 are different.  相似文献   

16.
Interaction of G-protein-coupled receptors with beta-arrestins is an important step in receptor desensitization and in triggering "alternative" signals. By means of confocal microscopy and fluorescence resonance energy transfer, we have investigated the internalization of the human P2Y receptors 1, 2, 4, 6, 11, and 12 and their interaction with beta-arrestin-1 and -2. Co-transfection of each individual P2Y receptor with beta-arrestin-1-GFP or beta-arrestin-2-YFP into HEK-293 cells and stimulation with the corresponding agonists resulted in a receptor-specific interaction pattern. The P2Y(1) receptor stimulated with ADP strongly translocated beta-arrestin-2-YFP, whereas only a slight translocation was observed for beta-arrestin-1-GFP. The P2Y(4) receptor exhibited equally strong translocation for beta-arrestin-1-GFP and beta-arrestin-2-YFP when stimulated with UTP. The P2Y(6), P2Y(11), and P2Y(12) receptor internalized only when GRK2 was additionally co-transfected, but beta-arrestin translocation was only visible for the P2Y(6) and P2Y(11) receptor. The P2Y(2) receptor showed a beta-arrestin translocation pattern that was dependent on the agonist used for stimulation. UTP translocated beta-arrestin-1-GFP and beta-arrestin-2-YFP equally well, whereas ATP translocated beta-arrestin-1-GFP to a much lower extent than beta-arrestin-2-YFP. The same agonist-dependent pattern was seen in fluorescence resonance energy transfer experiments between the fluorescently labeled P2Y(2) receptor and beta-arrestins. Thus, the P2Y(2) receptor would be classified as a class A receptor when stimulated with ATP or as a class B receptor when stimulated with UTP. The ligand-specific recruitment of beta-arrestins by ATP and UTP stimulation of P2Y(2) receptors was further found to result in differential stimulation of ERK phosphorylation. This suggests that the two different agonists induce distinct active states of this receptor that show differential interactions with beta-arrestins.  相似文献   

17.
Parathyroid hormone (PTH) regulates calcium homeostasis via the type I PTH/PTH-related peptide (PTH/PTHrP) receptor (PTH1R). The purpose of the present study was to identify the contributions of distinct signaling mechanisms to PTH-stimulated activation of the mitogen-activated protein kinases (MAPK) ERK1/2. In Human embryonic kidney 293 (HEK293) cells transiently transfected with hPTH1R, PTH stimulated a robust increase in ERK activity. The time course of ERK1/2 activation was biphasic with an early peak at 10 min and a later sustained ERK1/2 activation persisting for greater than 60 min. Pretreatment of HEK293 cells with the PKA inhibitor H89 or the PKC inhibitor GF109203X, individually or in combination reduced the early component of PTH-stimulated ERK activity. However, these inhibitors of second messenger dependent kinases had little effect on the later phase of PTH-stimulated ERK1/2 phosphorylation. This later phase of ERK1/2 activation at 30-60 min was blocked by depletion of cellular beta-arrestin 2 and beta-arrestin 1 by small interfering RNA. Furthermore, stimulation of hPTH1R with PTH analogues, [Trp1]PTHrp-(1-36) and [d-Trp12,Tyr34]PTH-(7-34), selectively activated G(s)/PKA-mediated ERK1/2 activation or G protein-independent/beta-arrestin-dependent ERK1/2 activation, respectively. It is concluded that PTH stimulates ERK1/2 through several distinct signal transduction pathways: an early G protein-dependent pathway meditated by PKA and PKC and a late pathway independent of G proteins mediated through beta-arrestins. These findings imply the existence of distinct active conformations of the hPTH1R responsible for the two pathways, which can be stimulated by unique ligands. Such ligands may have distinct and valuable therapeutic properties.  相似文献   

18.
19.
The G protein-coupled thyrotropin-releasing hormone (TRH) receptor is phosphorylated and binds to beta-arrestin after agonist exposure. To define the importance of receptor phosphorylation and beta-arrestin binding in desensitization, and to determine whether beta-arrestin binding and receptor endocytosis are required for receptor dephosphorylation, we expressed TRH receptors in fibroblasts from mice lacking beta-arrestin-1 and/or beta-arrestin-2. Apparent affinity for [(3)H]MeTRH was increased 8-fold in cells expressing beta-arrestins, including a beta-arrestin mutant that did not permit receptor internalization. TRH caused extensive receptor endocytosis in the presence of beta-arrestins, but receptors remained primarily on the plasma membrane without beta-arrestin. beta-Arrestins strongly inhibited inositol 1,4,5-trisphosphate production within 10 s. At 30 min, endogenous beta-arrestins reduced TRH-stimulated inositol phosphate production by 48% (beta-arrestin-1), 71% (beta-arrestin-2), and 84% (beta-arrestins-1 and -2). In contrast, receptor phosphorylation, detected by the mobility shift of deglycosylated receptor, was unaffected by beta-arrestins. Receptors were fully phosphorylated within 15 s of TRH addition. Receptor dephosphorylation was identical with or without beta-arrestins and almost complete 20 min after TRH withdrawal. Blocking endocytosis with hypertonic sucrose did not alter the rate of receptor phosphorylation or dephosphorylation. Expressing receptors in cells lacking Galpha(q) and Galpha(11) or inhibiting protein kinase C pharmacologically did not prevent receptor phosphorylation or dephosphorylation. Overexpression of dominant negative G protein-coupled receptor kinase-2 (GRK2), however, retarded receptor phosphorylation. Receptor activation caused translocation of endogenous GRK2 to the plasma membrane. The results show conclusively that receptor dephosphorylation can take place on the plasma membrane and that beta-arrestin binding is critical for desensitization and internalization.  相似文献   

20.
G-protein-coupled receptors (GPCRs) are regulated by a complex network of mechanisms such as oligomerization and internalization. Using the GPCR subtypes for thyrotropin-releasing hormone (TRHR1 and TRHR2), the aim of this study was to determine if subtype-specific differences exist in the trafficking process. If so, we wished to determine the impact of homo- and hetero-oligomerization on TRHR subtype trafficking as a potential mechanism for the differential cellular responses induced by TRH. Expression of either beta-arrestin 1 or 2 promoted TRHR1 internalization. In contrast, only beta-arrestin 2 could enhance TRHR2 internalization. The preference for beta-arrestin 2 by TRHR2 was supported by the impairment of TRHR2 trafficking in mouse embryonic fibroblasts (MEFs) from either a beta-arrestin 2 knockout or a beta-arrestin 1/2 knockout, while TRHR1 trafficking was only abolished in MEFs lacking both beta-arrestins. The differential beta-arrestin-dependence of TRHR2 was directly measured in live cells using bioluminescence resonance energy transfer (BRET). Both BRET and confocal microscopy were also used to demonstrate that TRHR subtypes form hetero-oligomers. In addition, these hetero-oligomers have altered internalization kinetics compared with the homo-oligomer. The formation of TRHR1/2 heteromeric complexes increased the interaction between TRHR2 and beta-arrestin 1. This may be due to conformational differences between TRHR1/2 hetero-oligomers versus TRHR2 homo-oligomers as a mutant TRHR1 (TRHR1 C335Stop) that does not interact with beta-arrestins, could also enhance TRHR2/beta-arrestin 1 interaction. This study demonstrates that TRHR subtypes are differentially regulated by the beta-arrestins and also provides the first evidence that the interactions of TRHRs with beta-arrestin may be altered by hetero-oligomer formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号