首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The induction of mycrocyst formation by methionine starvation was demonstrated in Myxococcus xanthus by several methods. Growing in a defined medium (M(1)), M. xanthus had a doubling time of 6.5 hr. Four amino acids-leucine, isoleucine, valine, and glycine-were required for growth under these conditions. When the concentration of several amino acids in the medium was reduced (M(2)), the doubling time increased to 10 to 12 hr, and a requirement for methionine was observed. Methionine starvation led to a slow conversion of the population to microcysts. Under conditions of methionine prototrophy (M(1)), microcyst formation could still be triggered in exponentially growing cells by the addition of either 5 mm ethionine or 0.1 m isoleucine plus 0.1 m threonine, feedback inhibitors of methionine biosynthesis. Vegetative growth in the absence of methionine was obtained in medium M(2) if the leucine concentration was raised to its level in medium M(1). Thus, methionine biosynthesis is controlled by the exogenous concentration of the required amino acid, leucine. During an examination of the effects of methionine metabolites on microcyst formation, the involvement of polyamines in morphogenesis was uncovered. Putrescine (0.05 m) induced the formation of microcysts; spermidine (2 to 5 mm) inhibited induction by methionine starvation, ethionine, or high isoleucine-threonine. Spermidine was the only polyamine detected in M. xanthus (16.0 mug/10(9) cells). Its concentration decreased by more than 50% shortly after microcyst induction by high isoleucine-threonine. It is postulated that spermidine is an inhibitor of microcyst induction; when spermidine formation is blocked by methionine starvation, morphogenesis is induced.  相似文献   

2.
The relationship between aspartokinase activity and fruiting body formation in Myxococcus xanthus was investigated. Two required amino acids, methionine and isoleucine, which stimulated the enzyme in vitro also inhibited fruiting body formation when added to 0.1% Casitone agar. Threonine, a potent feedback inhibitor of the aspartokinase, completely reversed the effects of methionine and isoleucine both on enzyme activity and fruiting body formation. A mutant, M. xanthus FB-S, which had the unusual property of forming fruiting bodies on 1.0% Casitone agar, also exhibited an altered regulation of aspartokinase activity. Spermidine, which is a strong stimulator of the enzyme in vitro, interfered with the developmental cycle of both M. xanthus FB and FS-S. During glycerol induction of myxospores the level of aspartokinase dropped more than 75% during the first hour. These data indicate a strong correlation between aspartokinase activity and the induction of the developmental cycle in M. xanthus. It is suggested that the decrease in aspartokinase activity results in diaminopimelic acid starvation, blockage of cell wall growth, and subsequent induction of the developmental cycle.  相似文献   

3.
Bacterial sporulation in Gram-positive bacteria results in small acid-soluble proteins called SASPs that bind to DNA and prevent the damaging effects of UV radiation. Orthologs of Bacillus subtilis genes encoding SASPs can be found in many sporulating and nonsporulating bacteria, but they are noticeably absent from spore-forming, Gram-negative Myxococcus xanthus. This is despite the fact that M. xanthus can form UV-resistant spores. Here we report evidence that M. xanthus produces its own unique group of low-molecular-weight, acid-soluble proteins that facilitate UV resistance in spores. These M. xanthus-specific SASPs vary depending upon whether spore formation is induced by starvation inside cell aggregations of fruiting bodies or is induced artificially by glycerol induction. Molecular predictions indicate that M. xanthus SASPs may have some association with the cell walls of M. xanthus spores, which may signify a different mechanism of UV protection than that seen in Gram-positive spores.  相似文献   

4.
Myxococcus xanthus is a Gram-negative, soil-dwelling bacterium with a complex life cycle which includes fruiting body formation and sporulation in response to starvation. This developmental process is slow, requiring a minimum of 24–48 h, and requires cells to be at high cell density on a solid surface. It is known that, in the absence of starvation, vegetatively growing cell suspensions can form 'glycerol spores' when exposed to high levels of glycerol, usually 0.5 M. The cells differentiate from rods to resistant spheres rapidly (2–4 h) and synchronously. We have found that the chromosomally encoded β-lactamase of M. xanthus can be induced by numerous β-lactam antibiotics as well as by non-specific inducers including glycine and many D -amino acids. In addition, D -cycloserine, phosphomycin, and hen egg-white lysozyme also induce β-lactamase in this bacterium. Unexpectedly, agents which induce β-lactamase can induce 'glycerol spores'; all of the agents tested which induce glycerol spores (glycerol, DMSO, ethylene glycol) also induce β-lactamase. During the induction of sporulation, β-lactamase activity increases, reaching a peak during the morphological transition from rod-shaped cells to spherical spores. These spores are viable and resistant to many treatments which disrupt vegetatively growing rods but are not as resistant as fruiting body spores. The concomitant induction of β-lactamase and starvation-independent sporulation suggests that these processes share a common signal-transduction pathway. These results also suggest that starvation-independent sporulation may be an adaptation of cells in order to resist agents that damage peptidoglycan structure and therefore threaten cell survival.  相似文献   

5.
Exogenous cyclic nucleotide phosphodiesterase (PD) accelerated fruiting body (FB) formation and increased territory size of aggregates in Myxococcus xanthus. Both guanosine 3'5'-monophosphate (cGMP) and guanosine 5'-monophosphate (GMP) were antagonistic to the PD effect. Adenosine 3'5'-monophosphate (cAMP) increases FB numbers twofold in the absence but not in the presence of PD. PD induction is not affected by methionine or isoleucine, which inhibit, or by threonine, which stimulates, FB formation. There is an increase and subsequent decrease in cAMP levels during early glycerol-induced microcyst development but 10 mM theophylline or caffeine not only inhibited microcyst development but induced germination in the presence of glycerol. On the basis of these results and the reports of other investigators a tentative model is proposed based on a dual role for cyclic nucleotides in the development in M. xanthus.  相似文献   

6.
N Tojo  S Inouye    T Komano 《Journal of bacteriology》1993,175(8):2271-2277
The lon gene of Escherichia coli is known to encode protease La, an ATP-dependent protease associated with cellular protein degradation. A lon gene homolog from Myxococcus xanthus, a soil bacterium which differentiates to form fruiting bodies upon nutrient starvation, was cloned and characterized by use of the lon gene of E. coli as a probe. The nucleotide sequence of the M. xanthus lon gene was determined. It contains an open reading frame that encodes a 92-kDa protein consisting of 817 amino acid residues. The deduced amino acid sequence of the M. xanthus lon gene product showed 60 and 56% identity with those of the E. coli and Bacillus brevis lon gene products, respectively. Analysis of an M. xanthus strain carrying a lon-lacZ operon fusion suggested that the lon gene is similarly expressed during vegetative growth and development in M. xanthus. In contrast to that of E. coli, the M. xanthus lon gene was shown to be essential for cell growth, since a null mutant could not be isolated.  相似文献   

7.
Myxococcus xanthus is a gram-negative bacterium that develops in response to starvation on a solid surface. The cells assemble into multicellular aggregates in which they differentiate from rod-shaped cells into spherical, environmentally resistant spores. Previously, we have shown that the induction of beta-lactamase is associated with starvation-independent sporulation in liquid culture (K. A. O'Connor and D. R. Zusman, Mol. Microbiol. 24:839-850, 1997). In this paper, we show that the chromosomally encoded beta-lactamase of M. xanthus is autogenously induced during development. The specific activity of the enzyme begins to increase during aggregation, before spores are detectable. The addition of inducers of beta-lactamase in M. xanthus, such as ampicillin, D-cycloserine, and phosphomycin, accelerates the onset of aggregation and sporulation in developing populations of cells. In addition, the exogenous induction of beta-lactamase allows M. xanthus to fruit on media containing concentrations of nutrients that are normally too high to support development. We propose that the induction of beta-lactamase is an integral step in the development of M. xanthus and that this induction is likely to play a role in aggregation and in the restructuring of peptidoglycan which occurs during the differentiation of spores. In support of this hypothesis, we show that exogenous induction of beta-lactamase can rescue aggregation and sporulation of certain mutants. Fruiting body spores from a rescued mutant are indistinguishable from wild-type fruiting body spores when examined by transmission electron microscopy. These results show that the signal transduction pathway leading to the induction of beta-lactamase plays an important role in aggregation and sporulation in M. xanthus.  相似文献   

8.
At least 78%, and perhaps all, of inorganic polyphosphate is shown to be contained within the vesicles (vacuoles) of Neurospora crassa, where over 97% of the soluble arginine, lysine, and ornithine pools are known to accumulate. Furthermore, synthetic polyphosphate can concentrate arginine up to 400-fold from dilute (0.01 mM) solutions in equilibrium dialysis. For these reasons and because the molar ratio of basic amino acids and polyphosphate phosphorus is approximately 1, we tested the hypothesis that there was an obligate physiological relationship between them. Experiments in which nitrogen starvation and arginine excess were imposed upon cells showed that polyphosphate content was insensitive to changes in the basic amino acid content. Experiments involving phosphate starvation and restoration showed that basic amino acid content was almost wholly independent of polyphosphate pools. Moreover, the normal high degree of compartmentation of arginine in vesicles was maintained despite polyphosphate depletion, and arginine was still exchanged across the vesicular membrane. We conclude that N. crassa, like yeasts, can regulate polyphosphates and basic amino acids independently, and that the accumulation of basic amino acids in vesicles may depend upon an energy-requiring mechanism in addition to the demonstrated charge interaction with polyphosphate.  相似文献   

9.
Cultures of Myxococcus xanthus develop multicellular fruiting bodies when starved for carbon and nitrogen sources on an agar surface. Under these conditions of severe starvation, cultures rapidly accumulated a compound identified as guanosine tetraphosphate by chromatographic migration of the compound and of its major acid and alkali breakdown products. The accumulation of guanosine tetraphosphate was reduced in the presence of tetracycline, indicating that it may be synthesized by mechanisms similar to those of Escherichia coli. The guanosine tetraphosphate level was also reduced in starved cultures of a mutant unable to fruit normally, although it has been determined whether the defect in guanosine tetraphosphate accumulation is responsible for the inability to fruit. Induction of spores by glycerol addition led to transient increases in both guanosine tetraphosphate and guanosine pentaphosphate at a stage following most cell shortening, but before spores had acquired full refractility.  相似文献   

10.
Myxococcus xanthus cells aggregate and develop into multicellular fruiting bodies in response to starvation. A new M. xanthus locus, designated dif for defective in fruiting, was identified by the characterization of a mutant defective in fruiting body formation. Molecular cloning, DNA sequencing and sequence analysis indicate that the dif locus encodes a new set of chemotaxis homologues of the bacterial chemotaxis proteins MCPs (methyl-accepting chemotaxis proteins), CheW, CheY and CheA. The dif genes are distinct genetically and functionally from the previously identified M. xanthus frz chemotaxis genes, suggesting that multiple chemotaxis-like systems are required for the developmental process of M. xanthus fruiting body formation. Genetic analysis and phenotypical characterization indicate that the M. xanthus dif locus is required for social (S) motility. This is the first report of a M. xanthus chemotaxis-like signal transduction pathway that could regulate or co-ordinate the movement of M. xanthus cells to bring about S motility.  相似文献   

11.
Abstract Progression through early Myxococcus xanthus multicellular fruiting body development requires the generation of and response to extracellular A signal. Extracellular A signal is a specific set of amino acids at an extracellular concentration greater than 10 μM. It functions as a cell density signal during starvation that allows the cells to sense that a minimal cell density has been reached and development can proceed. The generation of extracellular A signal requires the products of three asg genes. They have recently been identified as AsgA, a fused two-component histidine protein kinase and response regulator; AsgB, a putative DNA-binding protein; and AsgC, the M. xanthus major sigma factor. Other elements of the A signaling pathway map to the sasB locus and appear to be A signal transducers. These elements are regulators of the earliest A signal-dependent gene, whose promoter is a member of the sigma-54 family. Continued study of the A signaling pathway is expected to identify additional components of this network required for the complex behavioural response of fruiting body formation.  相似文献   

12.
1. Myxococcus xanthus B and M. virescens V2 were compared with a view to establishing the control of their morphogenetic cycles. Both organisms are typical myxococci and on solid media with low concentrations of nutrient they form fruiting bodies, within which vegetative cells convert to myxospores. Ultrathin sections of vegetative M. virescens resembled those of M. xanthus and contained prominent heavily stained bodies, presumed to be polyphosphate granules. Shadowed preparations showed fimbriae associated with M. xanthus but not with M. virescens. 2. M. xanthus B converted to myxospores in liquid medium in response to certain alcohols. M. virescens V2 produced phase-refractile spheres, which were not viable and had an unusual ultrastructure. 3. The distributions of fruiting bodies on solid media containing 0.02% Casitone were recorded for the two species and were compared with a Poisson distribution. Cells responded to differences in cell density in a manner suggestive of a response to a chemotactic attractant. Cells growing vegetatively and also cells forming fruiting bodies produced 3',5'-cyclic adenosine monophosphate (cAMP) as measured by the incorporation of exogeneous [3H] adenosine into cAMP. 4. The significance of these findings for theories of fruiting body formation are discussed.  相似文献   

13.
Myxococcus xanthus is a predatory bacterium that exhibits complex social behavior. The most pronounced behavior is the aggregation of cells into raised fruiting body structures in which cells differentiate into stress-resistant spores. In the laboratory, monocultures of M. xanthus at a very high density will reproducibly induce hundreds of randomly localized fruiting bodies when exposed to low nutrient availability and a solid surface. In this report, we analyze how M. xanthus fruiting body development proceeds in a coculture with suitable prey. Our analysis indicates that when prey bacteria are provided as a nutrient source, fruiting body aggregation is more organized, such that fruiting bodies form specifically after a step-down or loss of prey availability, whereas a step-up in prey availability inhibits fruiting body formation. This localization of aggregates occurs independently of the basal nutrient levels tested, indicating that starvation is not required for this process. Analysis of early developmental signaling relA and asgD mutants indicates that they are capable of forming fruiting body aggregates in the presence of prey, demonstrating that the stringent response and A-signal production are surprisingly not required for the initiation of fruiting behavior. However, these strains are still defective in differentiating to spores. We conclude that fruiting body formation does not occur exclusively in response to starvation and propose an alternative model in which multicellular development is driven by the interactions between M. xanthus cells and their cognate prey.  相似文献   

14.
Previous studies showed that high concentrations of methionine (> 1 mM) inhibited aggregation and fruiting body formation in Myxococcus xanthus (E. Rosenberg, D. Filer, D. Zafriti, and S. H. Kindler, J. Bacteriol. 115: 29-34, 1973, and J. M. Campos and D. R. Zusman, Proc. Natl. Acad. Sci. USA 72:518-522, 1975). However, the mechanism for the inhibition was unclear. In this study, we found that high levels of methionine inhibited the biosynthesis of S-adenosylmethionine (SAM) and that reduced intracellular levels of SAM are correlated with defective chemotactic movements and reduced developmental gene expression. In addition, we found that methionine analogs and high concentrations of amino acids which are known to affect SAM synthesis in other bacteria, such as threonine, lysine, and isoleucine, also caused reduced cellular levels of SAM and blocked fruiting body formation in M. xanthus. These results indicate that SAM is required for development of M. xanthus and the inhibitory effect of methionine on development results, at least in part, from its blocking of the biosynthesis of SAM.  相似文献   

15.
Identification of heat-stable A-factor from Myxococcus xanthus.   总被引:9,自引:4,他引:5       下载免费PDF全文
A Kuspa  L Plamann    D Kaiser 《Journal of bacteriology》1992,174(10):3319-3326
The asg mutants of Myxococcus xanthus fail to produce a set of related substances called A-factor. A-factor is released into the medium and is required early in fruiting body development. Lacking A-factor, the asg mutants are defective in aggregation, sporulation, and expression of most genes whose products appear later than 1 h after development is induced by starvation. Previous work has shown that these defects are reversed when A-factor, released by developing wild-type cells, is added to asg mutant cells. Part of the material in conditioned medium with A-factor activity is heat stable and dialyzable. This low-molecular-weight A-factor consists of a mixture of amino acids and peptides. Fifteen single amino acids have A-factor activity, and 11 of these are found in conditioned medium. Mixtures of amino acids have a total activity approximately equal to the sum of the activities of their constituents. Conditioned medium also contains peptides with A-factor activity. Pure peptides have A-factor activity, and their specific activities are equal to or less than the sum of the activities of their constituent amino acids. There is no evidence for a specialized A-factor peptide in conditioned medium, one with a specific activity greater than the sum of its constituent amino acids. About half of the heat-stable A-factor activity in conditioned medium can be accounted for by free amino acids, and the remaining half can be accounted for by peptides. It is argued that heat-stable A-factor induces A-dependent gene expression not by the nutritional action of amino acids but through a chemosensory circuit.  相似文献   

16.
The pattern of cross-pathway regulation of the arginine synthetic enzyme ornithine carbamoyltransferase was investigated in Neurospora crassa, using single and double mutant auxotrophic strains starved for their required amino acids. These experiments show that starvation for histidine, tryptophan, isoleucine, valine or arginine can result in derepression of ornithine carbamoyltransferase. Methionine starvation also gave slight derepression, but starvation for lysine or leucine gave little or no effect.  相似文献   

17.
Helicobacter pylori: a Eubacterium Lacking the Stringent Response   总被引:2,自引:0,他引:2  
Accumulation of 16S rRNA and production of guanosine polyphosphates (pppGpp and ppGpp) were studied during amino acid starvation in three wild-type strains of Helicobacter pylori. All strains exhibit a relaxed phenotype with respect to accumulation of 16S rRNA. This constitutes the first example of a wild-type eubacterium showing a relaxed phenotype. The guanosine polyphosphate levels do not rise as a result of amino acid starvation, as expected for relaxed organisms. However, in both growing and starved cells, basal levels of the two polyphosphates appeared to be present, demonstrating that the enzymatic machinery for guanosine polyphosphate production is present in this organism. These findings are discussed within the framework of the hypothesis that stringent control is a physiological control mechanism more important for the fitness of prokaryotes growing in the general environment than for those that inhabit protected niches.  相似文献   

18.
Exponential-phase cells of Neurospora crassa require the continued presence of a protein inducer and nitrogen starvation to induce exocellular protease under conditions where protein is the sole nitrogen source. The nature of the protein inducer appears relatively unimportant, since both soluble proteins (e.g., myoglobin) and insoluble proteins (e.g., corn zein) will effect induction. Nonstarved cells of N. crassa appear to have small nitrogen pools, since nitrogen starvation of exponential cells prior to transfer into a medium where protein is the sole nitrogen source effects starvation-time-dependent decreases in protease biosynthesis. Ammonium ion represses protease synthesis, with apparent specificity at low concentrations. The amino acids arginine, tryptophan, and threonine effect repression of protease biosynthesis under conditions of nitrogen starvation. Under conditions of sulfur starvation, the amino acids cysteine, methionine, and cystine repress protease biosynthesis. In carbon-starved cells, all of the above amino acids, plus histidine, isoleucine, leucine, lysine, phenylalanine, and valine, effect repression. Examination of amino acid pools formed when cells are grown on protein as the sole nitrogen source demonstrated that the amino acids which repress protease biosynthesis under conditions where protein is the sole carbon source accumulate in significant amounts during the course of protease induction, with kinetics consonant with the induction process.  相似文献   

19.
Myxococcus xanthus, a gram-negative soil bacterium, responds to amino acid starvation by entering a process of multicellular development which culminates in the assembly of spore-filled fruiting bodies. Previous studies utilizing developmental inhibitors (such as methionine, lysine, or threonine) have revealed important clues about the mechanisms involved in fruiting body formation. We used Biolog phenotype microarrays to screen 384 chemicals for complete inhibition of fruiting body development in M. xanthus. Here, we report the identification of a novel inhibitor of fruiting body formation and sporulation, beta-d-allose. beta-d-Allose, a rare sugar, is a member of the aldohexose family and a C3 epimer of glucose. Our studies show that beta-d-allose does not affect cell growth, viability, agglutination, or motility. However, beta-galactosidase reporters demonstrate that genes activated between 4 and 14 h of development show significantly lower expression levels in the presence of beta-d-allose. Furthermore, inhibition of fruiting body formation occurs only when beta-d-allose is added to submerged cultures before 12 h of development. In competition studies, high concentrations of galactose and xylose antagonize the nonfruiting response to beta-d-allose, while glucose is capable of partial antagonism. Finally, a magellan-4 transposon mutagenesis screen identified glcK, a putative glucokinase gene, required for beta-d-allose-mediated inhibition of fruiting body formation. Subsequent glucokinase activity assays of the glcK mutant further supported the role of this protein in glucose phosphorylation.  相似文献   

20.
The influence of protein deficiency, rehabilitation and total starvation on the free amino acid levels in the blood plasma of pigs has been investigated. It was found that the concentration of most amino acids was reduced during protein deficiency. The levels of leucine, isoleucine and valine were diminished by the greatest proportion, followed by threonine, tyrosine and citrulline. During the first few weeks of protein deficiency the levels of lysine, histidine and arginine were slightly increased, but later decreased below control values. Concentrations of glycine and alanine were altered in a similar way except that the initial increase was much more pronounced. The concentrations of most of these amino acids returned to control levels after rehabilitation. Total starvation led to an increase in concentration of leucine, isoleucine, valine, threonine and to a smaller extent phenylalanine, lysine, citrulline and arginine. The concentration of glycine, alanine and glutamic acid were very much reduced. The level of urea in the circulation dropped reversibly during protein deficiency and increased very much during total starvation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号