首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fibroblast cultures derived from the skin of three Hunter heterozygotes have been examined for iduronate sulfatase deficiency primarily by measurement of [35S]-mucopolysaccharide accumulation in the presence and absence of Hunter corrective factor. For each heterozygote, two populations of clones were observed: normal and enzyme deficient, as predicted by the Lyon hypothesis. However, the phenotype of the uncloned cultures was usually normal, presumably because of cross-correction, even after storage in liquid N2. Mixing experiments indicate that the presence of a majority of cells with the Hunter phenotype may be obscured as the result of correction by the minority population of normal cells in the mixture. Variability in the ability to cross-correct was also demonstrated. The unpredictable behavior of uncloned cultures make them unsuitable for diagnosing the Hunter carrier state.  相似文献   

2.
Amelogenin-deficient mice display an amelogenesis imperfecta phenotype.   总被引:8,自引:0,他引:8  
Dental enamel is the hardest tissue in the body and cannot be replaced or repaired, because the enamel secreting cells are lost at tooth eruption. X-linked amelogenesis imperfecta (MIM 301200), a phenotypically diverse hereditary disorder affecting enamel development, is caused by deletions or point mutations in the human X-chromosomal amelogenin gene. Although the precise functions of the amelogenin proteins in enamel formation are not well defined, these proteins constitute 90% of the enamel organic matrix. We have disrupted the amelogenin locus to generate amelogenin null mice, which display distinctly abnormal teeth as early as 2 weeks of age with chalky-white discoloration. Microradiography revealed broken tips of incisors and molars and scanning electron microscopy analysis indicated disorganized hypoplastic enamel. The amelogenin null phenotype reveals that the amelogenins are apparently not required for initiation of mineral crystal formation but rather for the organization of crystal pattern and regulation of enamel thickness. These null mice will be useful for understanding the functions of amelogenin proteins during enamel formation and for developing therapeutic approaches for treating this developmental defect that affects the enamel.  相似文献   

3.
Endogenous modulators of the central melanocortin system, such as the agouti-related protein (AgRP), should hold a pivotal position in the regulation of energy intake and expenditure. Despite this, AgRP-deficient mice were recently reported to exhibit normal food intake, body weight gain, and energy expenditure. Here we demonstrate that 2- to 3-month-old Agrp null mice do in fact exhibit subtle changes in response to feeding challenges (fasting and MCR agonists) but, of more significance and magnitude, exhibit reduced body weight and adiposity after 6 months of age. This age-dependent lean phenotype is correlated with increased metabolic rate, body temperature, and locomotor activity and increased circulating thyroid hormone (T4 and T3) and BAT UCP-1 expression. These results provide further proof of the importance of the AgRP neuronal system in the regulation of energy homeostasis.  相似文献   

4.
The thrombospondin-related anonymous protein (TRAP) is an essential transmembrane molecule in Plasmodium sporozoites. TRAP displays adhesive motifs on the extracellular portion, whereas its cytoplasmic tail connects to actin via aldolase, thus driving parasite motility and host cell invasion. The minimal requirements for the TRAP binding to aldolase were scanned here and found to be shared by different human proteins, including the Wiskott-Aldrich syndrome protein (WASp) family members. In vitro and in vivo binding of WASp members to aldolase was characterized by biochemical, deletion mapping, mutagenesis, and co-immunoprecipitation studies. As in the case of TRAP, the binding of WASp to aldolase is competitively inhibited by the enzyme substrate/products. Furthermore, TRAP and WASp, but not other unrelated aldolase binders, compete for the binding to the enzyme in vitro. Together, our results define a conserved aldolase binding motif in the WASp family members and suggest that aldolase modulates the motility and actin dynamics of mammalian cells. These findings along with the presence of similar aldolase binding motifs in additional human proteins, some of which indeed interact with aldolase in pull-down assays, suggest supplementary, non-glycolytic roles for this enzyme.  相似文献   

5.
6.
Alzheimer disease (AD) is a major health problem in the United States, affecting one in eight Americans over the age of 65. The number of elderly suffering from AD is expected to continue to increase over the next decade, as the average age of the U.S. population increases. The risk factors for and etiology of AD are not well understood; however, recent studies suggest that exposure to oxidative stress may be a contributing factor. Here, microarray gene expression signatures were compared in AD-patient-derived fibroblasts and normal fibroblasts exposed to hydrogen peroxide or menadione (to simulate conditions of oxidative stress). Using the 23K Illumina cDNA microarray to screen expression of >14,000 human genes, we identified a total of 1017 genes that are chronically up- or downregulated in AD fibroblasts, 215 of which were also differentially expressed in normal human fibroblasts within 12h after exposure to hydrogen peroxide or menadione. Pathway analysis of these 215 genes and their associated pathways revealed cellular functions that may be critically dysregulated by oxidative stress and play a critical role in the etiology and/or pathology of AD. We then examined the AD fibroblasts for the presence of oxidative DNA damage and found increased accumulation of 8-oxo-guanine. These results indicate the possible role of oxidative stress in the gene expression profile seen in AD.  相似文献   

7.
Wiskott-Aldrich syndrome (WAS) is an X-linked recessive disorder characterized by thrombocytopenia, eczema, immune deficiency, and a proclivity toward lymphoid malignancy. Lymphocytes of affected individuals show defects of activation, motility, and cytoskeletal structure. The disease gene encodes a 502-amino acid protein named the WAS protein (WASP). Studies have identified a number of important interactions that place WASP in a role of integrating signaling pathways with cytoskeletal function. We performed a two-hybrid screen to identify proteins interacting with WASP and cloned a proline-rich protein as a specific WASP interactor. Our clone of this protein, termed WASP interacting protein (WIP) by others, shows a difference in seven amino acid residues, compared with the previously published sequence revealing an additional profilin binding motif. Deletion mutant analysis reveals that WASP residues 101-151 are necessary for WASP-WIP interaction. Point mutant analyses in the two-hybrid system and in vitro show impairment of WASP-WIP interaction with three WASP missense mutants known to cause WAS. We conclude that impaired WASP-WIP interaction may contribute to WAS.  相似文献   

8.
The Wiskott-Aldrich syndrome (WAS) is an X-linked recessive immunodeficiency affecting B lymphocytes, T lymphocytes, and platelets. Previous studies on lymphocytes from WAS patients have revealed that leu-kosialin (CD43), a cell-surface glycoprotein bearing approximately 90 O-linked oligosaccharide chains, shows an aberrant electrophoretic mobility. To determine whether this finding reflects a different pattern of O-linked glycosylation in WAS cells, we have compared healthy individuals and WAS patients with respect to glycosyltransferase activities in T lymphocytes, platelets, and Epstein-Barr virus (EBV)-immortalized B cell lines. Stimulation of peripheral T cells from normal individuals in vitro with anti-CD3 antibodies and interleukin-2 was associated with a 3-fold increase in UDP-GlcNAc:Gal beta 3GalNAc-R (GlcNAc to GalNAc) beta 6-N-acetylglucosaminyltransferase (core 2 GlcNAc-T) from 0.8 to 2.2 nmol/mg/h. In contrast, peripheral T lymphocytes from WAS patients showed an inversion of this phenotype with high core 2 GlcNAc-T activity in unstimulated cells (2.3 nmol/mg/h) and a 2-3-fold decrease in activity following stimulation. Core 2 GlcNAc-T activity was also three times higher in platelets from WAS patients than in normal platelets. Glycosyltransferase activities were measured in immortalized B cell lines established from WAS and normal subjects by infection with EBV. Core 2 GlcNAc-T was less than 0.4 nmol/mg/h in WAS EBV-B cell lines compared to 2.4 nmol/mg/h in EBV-B cell lines from healthy individuals, In contrast, CMP-SA:SA alpha 2-3Gal beta 1-3GalNAc-R (where SA represents sialyl (sialic acid to GalNAc) alpha 6-sialyltransferase II activity was 2.0 nmol/mg/h in the WAS EBV-B cell and less than .01 nmol/mg/h in EBV-B cell lines derived from normal subjects. Eleven other glycosyltransferase activities were measured and found to be similar in EBV-B cell lines from WAS and normal individuals. Polylactosamine sequences were much reduced in the O-linked oligosaccharides of CD43 from WAS EBV-B cells consistent with decreased core 2 GlcNAc-T activity and expression of core 1 oligosaccharides in the cells. In conclusion, B cells, T cells, and platelets in WAS patients show abnormal expression of two developmentally regulated glycosyltransferases, consistent with the idea that the WAS immunodeficiency is due to a failure of normal lymphocyte maturation.  相似文献   

9.
10.
Mucopolysaccharidosis IVA (MPS IVA) is caused by the deficiency of the lysosomal enzyme N-acetylgalactosamine-6-sulfate sulfatase encoded by the GALNS gene on chromosome 16. We describe, in detail, the clinical phenotype of five patients from three unrelated Finnish families and have characterized the disease-causing mutations in GALNS. Genotypes of the patients are D60N/A291T, D60N/W230X, and D60N/1374delT. Mutation 1374delT introduces premature termination of GALNS. Cells over-expressing the novel mutation W230X and A291T had no residual GALNS activity, whereas D60N gave 12.2% residual activity compared with the wild type. Co-transfection of D60N/A291T and D60N/W230X showed 5.5% and 6.7% of wild type activity, respectively. The precursor proteins of D60N and A291T were observed at 55 kDa and 57 kDa, respectively, whereas there was no detectable band in cells over-expressing W230X. At 55 degrees C, the mutant protein showed lower thermostability than the wild type protein at pH 3.8 and 7.0. The tertiary structural model of the GALNS protein revealed that aspartic acid at position 60 is located on the surface of the molecule, away from the active site. This makes it unlikely that the enzymatic function of the protein with D60N is severely impaired. On the other hand, A291 and W230 are localized near the active site. The molecular characteristics of the D60N mutation explain the attenuated clinical phenotype of the patients.  相似文献   

11.
Severe fever with thrombocytopenia syndrome (SFTS) caused by a species Dabie bandavirus (formerly SFTS virus [SFTSV]) is an emerging hemorrhagic infectious disease with a high case-fatality rate. One of the best strategies for preventing SFTS is to develop a vaccine, which is expected to induce both humoral and cellular immunity. We applied a highly attenuated but still immunogenic vaccinia virus strain LC16m8 (m8) as a recombinant vaccine for SFTS. Recombinant m8s expressing SFTSV nucleoprotein (m8-N), envelope glycoprotein precursor (m8-GPC), and both N and GPC (m8-N+GPC) in the infected cells were generated. Both m8-GPC- and m8-N+GPC-infected cells were confirmed to produce SFTSV-like-particles (VLP) in vitro, and the N was incorporated in the VLP produced by the infection of cells with m8-N+GPC. Specific antibodies to SFTSV were induced in mice inoculated with each of the recombinant m8s, and the mice were fully protected from lethal challenge with SFTSV at both 103 TCID50 and 105 TCID50. In mice that had been immunized with vaccinia virus strain Lister in advance of m8-based SFTSV vaccine inoculation, protective immunity against the SFTSV challenge was also conferred. The pathological analysis revealed that mice immunized with m8-GPC or m8-N+GPC did not show any histopathological changes without any viral antigen-positive cells, whereas the control mice showed focal necrosis with inflammatory infiltration with SFTSV antigen-positive cells in tissues after SFTSV challenge. The passive serum transfer experiments revealed that sera collected from mice inoculated with m8-GPC or m8-N+GPC but not with m8-N conferred protective immunity against lethal SFTSV challenge in naïve mice. On the other hand, the depletion of CD8-positive cells in vivo did not abrogate the protective immunity conferred by m8-based SFTSV vaccines. Based on these results, the recombinant m8-GPC and m8-N+GPC were considered promising vaccine candidates for SFTS.  相似文献   

12.
The Wiskott-Aldrich Syndrome (WAS) in humans has a number of similarities to the immunodeficiencies found in CBA/N mice, including X-chromosome-linked inheritance, inability to produce antibodies to various carbohydrate antigens, susceptibility to various bacterial infections, and an imbalance in B lymphocyte subpopulations. Moreover, in both man and mice, IgG antibodies to polysaccharides are predominantly, but not exclusively, restricted to a single IgG subclass--IgG2 in man, and IgG3 in the mouse. Because CBA/N mice have a deficiency of IgG3 antibodies and because human IgG2 subclass deficiencies have been generally associated with inability to produce antibodies to carbohydrate antigens, it would seem likely that patients with WAS would have greatly reduced levels of IgG2. Quite to the contrary, the data presented here demonstrate that WAS patients have normal levels of the different IgG subclasses, including IgG2. Thus, inability to produce antibodies to carbohydrates is not always associated with IgG2 subclass deficiency.  相似文献   

13.
X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disorder resulting from mutations within the ABCD1 gene. Adrenomyeloneuropathy (AMN) and childhood cerebral ALD (CCALD) are most common phenotypes in the Western ALD patients. Here we performed mutation analysis of ABCD1 in 10 Chinese ALD families and identified 8 mutations, including one novel deletion (c.1477_1488 + 11del23) and 7 known mutations. Mutations c.1772G>A and c.1816T>C were first reported in the Chinese patients. Mutations c.1661G>A and c.1679C>T were demonstrated to be de novo mutations. The dinucleotide deletion 1415_16delAG, described as a mutational hotspot in different ethnic groups, was identified in two families. In addition, we performed a retrospective nation-wide mutation study of X-linked ALD in China based on a literature review. The retrospective study further confirmed the hypothesis that exon 6 is a potential mutation cluster region in the Asian populations. Furthermore, it suggested that CCALD is the most common phenotype in China.  相似文献   

14.
The Wiskott-Aldrich syndrome (WAS) is an X-linked primary immunodeficiency disease, arising from mutations of the WAS-protein (WASP) gene. Previously, we have reported that mononuclear cells from WAS patients showed lack/reduced of the intracellular WASP (WASP(dim)) by flow cytometric analysis, and analysis of WASP by flow cytometry (FCM-WASP) was useful for WAS diagnosis. In this study, we report a WAS patient who showed the unique pattern of FCM-WASP. The patient had the small population of normal expression of WASP (WASP(bright)) mononuclear cells together with the major WASP(dim) population. The WASP(bright) cells were detected in T cells, not in B cells or in monocytes. Surprisingly, the molecular studies of the WASP(bright) cells revealed that the inherited mutation of WASP gene was reversed to normal. His mother was proved as a WAS carrier, and HLA studies and microsatellite polymorphic studies proved that the WASP(bright) cells were derived from the patient himself. Therefore, we concluded that the WASP(bright) cells were resulted from spontaneous in vivo reversion of the inherited mutation. Furthermore, the scanning electron microscopic studies indicated that WASP-positive cells from the patient restored the dense microvillus surface projections that were hardly observed in the WASP(dim) cells. This case might have significant implications regarding the prospects of the future gene therapy for WAS patients.  相似文献   

15.
The Wiskott-Aldrich syndrome protein (WASP) is a product of the gene defective in an Xid disorder, Wiskott-Aldrich syndrome. WASP expression is limited to hemopoietic cells, and WASP regulates the actin cytoskeleton. It has been reported that monocytes/macrophages from WASP-deficient Wiskott-Aldrich syndrome patients are severely defective in chemotaxis, resulting in recurrent infection. However, the molecular basis of such chemotactic defects is not understood. Recently, the WASP N-terminal region was found to bind to the three mammalian verprolin homologs: WASP interacting protein (WIP); WIP and CR16 homologous protein (WICH)/WIP-related protein (WIRE); and CR16. Verprolin was originally found to play an important role in the regulation of actin cytoskeleton in yeast. We have shown that WASP, WIP, and WICH/WIRE are expressed predominantly in the human monocyte cell line THP-1 and that WIP and WICH/WIRE are involved in monocyte chemotaxis. When WASP binding to verprolins was blocked, chemotactic migration of monocytes was impaired in both THP-1 cells and primary human monocytes. Increased expression of WASP and WIP enhanced monocyte chemotaxis. Blocking WASP binding to verprolins impaired cell polarization but not actin polymerization. These results indicate that a complex of WASP with mammalian verprolins plays an important role in chemotaxis of monocytes. Our results suggest that WASP and mammalian verprolins function as a unit in monocyte chemotaxis and that the activity of this unit is critical to establish cell polarization. In addition, our results also indicate that the WASP-verprolin complex is involved in other functions such as podosome formation and phagocytosis.  相似文献   

16.
B Deng  S Zhang  Y Geng  Y Zhang  Y Wang  W Yao  Y Wen  W Cui  Y Zhou  Q Gu  W Wang  Y Wang  Z Shao  Y Wang  C Li  D Wang  Y Zhao  P Liu 《PloS one》2012,7(7):e41365

Background

Severe fever with thrombocytopenia syndrome virus (SFTSV), which can cause hemorrhagic fever–like illness, is a newly discovered bunyavirus in China. The pathogenesis of SFTSV infection is poorly understood. However, it has been suggested that immune mechanisms, including cytokines and chemokines, play an important role in disease pathogenesis. In the present study, we investigated host cytokine and chemokine profiles in serum samples of patients with SFTSV infection from Northeast China and explored a possible correlation between cytokine levels and disease severity.

Methods and Principal Findings

Acute phase serum samples from 40 patients, diagnosed with SFTSV infection were included. Patients were divided into two groups – severe or non-severe – based on disease severity. Levels of tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β, interleukin-6, interferon (IFN)-γ, IFN- γ-induced protein (IP)-10 and RANTES were measured in the serum samples with commercial ELISAs. Statistical analysis showed that increases in TNF-α, IP-10 and IFN-γ were associated with disease severity.

Conclusions

We suggest that a cytokine-mediated inflammatory response, characterized by cytokine and chemokine production imbalance, might be in part responsible for the disease progression of patients with SFTSV infection.  相似文献   

17.
18.
X-linked myotubular myopathy is characterised by neonatal hypotonia, muscle weakness and respiratory distress in affected males, leading often to early death, although prolonged survival is observed in milder forms, or as a result of prolongation of ventilation support. It is caused by mutations in the MTM1 gene, which encodes a phosphatase called myotubularin, which has been highly conserved during evolution, down to yeasts ( S. cerevisiae and S. pombe). To date, 251 mutations have been identified in unrelated families, corresponding to 158 different disease-associated mutations, which are widespread throughout the gene. We have found additional mutations in 77 patients, including 35 novel ones. We identified a missense mutation N180K in a 67-year-old grandfather (the oldest known patient with an MTM1 mutation), previously suspected to have autosomal centronuclear myopathy, and in his two grandsons also mildly affected. Mild and moderate phenotypes associated with novel missense mutations and with a translation initiation defect mutation are discussed, as well as severe phenotypes associated with particular novel mutations. With the present report, 192 different mutations in the MTM1 gene have been described in 328 families. The spectrum of mutations is now enlarged from the very severe classic neonatal phenotype to very mild phenotype allowing survival to the age of 67 years.  相似文献   

19.
The Wiskott-Aldrich syndrome (WAS), an X-linked immunodeficiency disease caused by mutation in the recently isolated gene encoding WAS protein (WASP), is known to be associated with extensive clinical heterogeneity. Cumulative mutation data have revealed that WASP genotypes are also highly variable among WAS patients, but the relationship of phenotype with genotype in this disease remains unclear. To address this issue we characterized WASP mutations in 24 unrelated WAS patients, including 18 boys with severe classical WAS and 6 boys expressing mild forms of the disease, and then examined the degree of correlation of these as well as all previously published WASP mutations with disease severity. By analysis of these compiled mutation data, we demonstrated clustering of WASP mutations within the four most N-terminal exons of the gene and also identified several sites within this region as hotspots for WASP mutation. These characteristics were observed, however, in both severe and mild cases of the disease. Similarly, while the cumulative data revealed a predominance of missense mutations among the WASP gene lesions observed in boys with isolated thrombocytopenia, missense mutations were not exclusively associated with milder WAS phenotypes, but also comprised a substantial portion (38%) of the WASP gene defects found in patients with severe disease. These findings, as well as the detection of identical WASP mutations in patients with disparate phenotypes, reveal a lack of phenotype concordance with genotype in WAS and thus imply that phenotypic outcome in this disease cannot be reliably predicted solely on the basis of WASP genotypes. Received: 30 May 1996 / Revised: 16 July 1996  相似文献   

20.
Detailed immunologic studies were performed on nine patients with the Wiskott-Aldrich syndrome and selected family members. Striking clinical features included occurrence of bloody diarrhea, eczema, and thrombocytopenia during the first year of life in all patients. Recurrent infections were common, but there was notable lack of infections of the urinary system. Results of immunologic studies confirm previous reports of normal IgG levels, high IgA levels, and reduced IgM in most patients. Response to carbohydrate antigens measured by isohemagglutinin levels was diminished in some patients and normal in others. Reduction in delayed skin reactivity to a panel of skin test antigens was confirmed in all patients, and studies in vitro indicated diminished radioactive thymidine incorporation and lack of migration inhibitory factor production to these antigens as well. Response to optimal doses of phytohemagglutinin was normal in some patients and diminished in others, and in one patient was higher after 6 days than after 3 days of culture. Complement levels were normal or elevated. In some patients, there was evidence for a defect in function of polymorphonuclear leukocytes as indicated by failure of these cells to adhere to nylon fiber columns, although results of nitroblue tetrazolium and bacterial killing tests were normal. Diminished monocyte IgG receptors were found in four of eight patients studied. Abnormalities of immunoglobulin levels were found in five of eight family members of patients. Other parameters, including hematologic studies, platelet counts, evaluation of cellular immunity, and monocyte IgG receptors, were normal in the family members.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号