首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complementary addressed nonlinear photomodification of oligodeoxynucleotide dAGAGTATTGACTTA ("target") has been carried out by means of fluorescent derivatives of oligonucleotide dpAATACTCT ("addressed chromophore"). Three different ethidium derivatives were used as a chromophore. The photomodification was induced by nitrogen laser radiation (337 nm, 15 MW/cm2), which led to the target cleavage in the addressation region with the yield of the main fragment (8 bases long) about 10%, formation of specific covalent adduct target-addressed chromophore with the yield 20-70%, "hidden" (not revealed by gel electrophoresis) target damages with 7-27% yield (for different chromophores). The total yield of specific (i. e. localized in the vicinity of the addressation site) modification was 50-80%. The target cleavage and hidden damage generation are optically nonlinear processes. Piperidine treatment of the irradiated samples caused addressed cleavage of the target with up to 40% yield. All kinds of observed modification are not effected by high concentrations of free radical scavengers, 1,3 M t-BuOH or 10 mM cystamine. The bulk of the data is in agreement with the mechanism of nonlinear photomodification (the cleavage and hidden damage generation) based on the transfer of two-photon excitation energy from the chromophore to the target.  相似文献   

2.
Bleomycin displays clinical chemotherapeutic activity, but is so nonspecifically toxic that it is rarely administered. It was therefore of interest to determine whether bleomycin could be directed to cleave RNA or DNA at a specific site by conjugation to a complementary oligonucleotide. A 15 nt MYC complementary oligodeoxynucleotide (HMYC55) bearing a 5' bleomycin A5 (Blm) residue was designed to base-pair with nt 7047-7061 of human MYC mRNA. Reactivity of the Blm-HMYC55 conjugate (and mismatch controls) with a MYC mRNA 30-mer, a MYC DNA 30-mer, and a MYC 2'-O-methyl RNA 30-mer, nt 7041-7070, was analyzed in 100 microM FeNH(4)SO(4), 50 mM beta-mercaptoethanol, 200 mM LiCl, 10 mM Tris-HCl, pH 7.5, at 37 degrees C. Cleavage of the substrate RNA or DNA occurred primarily at the junction of the complementary DNA-target RNA duplex, 18-22 nt from the 5' end of the RNA. Reaction products with lower mobility than the target RNA or DNA also formed. Little or no reaction was observed with more than three mismatches in a Blm-oligodeoxynucleotide conjugate. Neither the short RNA or DNA cleavage fragments nor the low mobility products were observed in the absence of Fe(II), or the presence of excess EDTA. The target RNA was also cleaved efficiently by bleomycin within a hybrid duplex with a preformed single-nucleotide bulge in the RNA strand. New Blm-oligodeoxynucleotide conjugates containing long hexaethylene glycol phosphate based linkers between oligodeoxynucleotide and bleomycin were designed to target this bulge region. These conjugates achieved 8-18% cleavage of the target RNA, depending on the length of the linker. Blm-oligodeoxynucleotide conjugates thus demonstrated sequence specificity and site specificity against RNA and DNA targets.  相似文献   

3.
A sensitized photomodification of several single-stranded target DNAs by binary systems of oligonucleotide conjugates complementary to the adjacent regions of DNA was performed. One of the conjugates contained a sensitizer (pyrene, anthracene, or 1,2-benzanthracene), and another conjugate contained a photoreagent 4-azidotetrafluorobenzalhydrazone. The sensitized photomodification is initiated by irradiation at 365-580 nm due to effective energy transfer from the excited sensitizer to the photoreagent in a complementary complex of the binary system with the target DNA where the sensitizer and photoreagent are brought sterically together. Conditions for the quantitative photomodification of a single-stranded DNA by the binary system of oligonucleotide conjugates were found. The maximum degree of photomodification depends on the number of guanosine residues in the (pG)n sequence of the target DNA at the modification site: at n = 1 the yield of covalent adducts was 62-68%, at n = 2, 75-82%, and at n = 4, 98-99%.  相似文献   

4.
In this issue of Molecular Cell, Thoma et al. show that after a target mRNA is cleaved, upon treatment with an antisense oligodeoxynucleotide, the 3' cleavage product persists and is translated to produce an N-terminally truncated version of the protein encoded by the target mRNA.  相似文献   

5.
6.
The microstructural requirements for optimal interaction of neocarzinostatin chromophore (NCS-C) with DNA have been investigated using a series of hexadeoxyribonucleotides with modified bases such as O6-methyl G (MeG), I, 5-methyl C (MeC), U, or 5-Bromo U (BrU) at specific sites in its preferred trinucleotide 5'GNaNb3':5'Na,Nb,C3' (Na = A, C, or T). Results show that MeG:C and G:MeC in place of G:C improve direct strand cleavage at the target Nb (Nb = T greater than A much greater than C greater than G), whereas MeC:G and C:MeG in place of Na:Nb, hinder cleavage. The optimal base target at Nb appears to be determined by its ability to form T:A type base pairing instead of C:G type. The observed differences in DNA strand cleavage patterns can be rationalized by induced changes in target site structure and are compatible with a model for NCS-C:DNA interaction in which the naphthoate moiety intercalates between 5'GNa3', and the activated tetrahydro-s-indacene, lying in the minor groove, abstracts a hydrogen atom from C-5' of Nb.  相似文献   

7.
8.
9.
A polypurine tract in the supF gene of bacteriophage lambda (base pairs 167-176) was selected as the target for triple helix formation and targeted mutagenesis by an oligopurine (5'-AGGAAGGGGG-3') containing a chemically linked psoralen derivative (4'-hydroxymethyl-4,5',8-trimethylpsoralen) at its 5' terminus (psoAG10). The thymines at base pairs 166 and 167, a 5'ApT site, were targeted for photomodification. Exposure of the triple helical complex to long wavelength ultraviolet radiation led to the covalent binding of psoAG10 to the targeted region in the supF gene and to the induction of site-specific mutations. We report here experiments to characterize the photomodification of the targeted region of the supF gene in the context of triple helix formation. An electrophoretic mobility-shift assay showed that, at low radiation doses, monoadducts at base pair 166 were the major photoadducts. At higher doses the monoadducts were converted to crosslinks between base pairs 166 and 167. HPLC analysis of enzymatically hydrolyzed photoreaction mixtures was used to confirm the electrophoresis results. A strong strand preference for specific photoadduct formation was also detected.  相似文献   

10.
Site-specific modification of single-stranded DNA by oligonucleotide derivatives of p-azido-O-(4-aminobutyl)tetrafluorobenzaldoxime sensitized by an oligonucleotide derivative of pyrenylethylamine was studied. Upon irradiation with the long-wave UV light (365-390 nm) of a DNA target-oligonucleotide reagent complementary complex, a considerable increase in the rate of sensitized photomodification at the G11 residue of the target relative to the direct photomodification was observed owing to the singlet-single energy transfer from the sensitizer onto the photoreagent. Upon simultaneous irradiation of the complex with UV and visible light in the region of the triplet-triplet absorption of pyrene (360-580 nm), an additional increase in the modification rate and a change in its site-direction (from the G11 to T13 residue) occurred through the two-photon triplet-triplet sensitization. The total extent of the structure photomodification amounted to 80%.  相似文献   

11.
Two kinds of double-stranded oligonucleotides containing a single 8-oxo-7,8-dihydroguanine were labeled with (32)P at their 5' ends and exposed to gamma rays in the frozen aqueous state at 77 K, where both direct and quasi-direct effects of ionizing radiation predominate. Analysis of the oligonucleotides with 20% denaturing polyacrylamide gel electrophoresis revealed no difference in the immediate induction of strand breaks between oligonucleotides containing 8-oxo-7,8-dihydroguanine and their corresponding oligonucleotides with normal guanine, but piperidine-sensitive damage was induced more frequently in the former than in the latter. Sequence analysis of irradiated oligonucleotides showed that not only 8-oxo-7,8-dihydroguanine but also its neighboring bases and the cytosine residue that is paired to it became piperidine-sensitive in both oligonucleotides. These results suggest that 8-oxo-7,8-dihydroguanine, its neighboring bases and the opposite cytosine are candidates for radiation damage hot spots.  相似文献   

12.
Triplex-forming oligonucleotides (TFOs) are among the most specific DNA ligands and represent an important tool for specific regulation of gene expression. TFOs have also been used to target DNA-modifying molecules to obtain irreversible modifications on a specific site of the genome. A number of molecules have been recognized to target topoisomerase II and stabilize double-stranded cleavage mediated by this enzyme thus determining permanent DNA damage. Among these poisons, etoposide (VP16), a 4'-demethylepipodophyllotoxin derivative, is widely used in cancer chemotherapy. In the aim to design DNA site-specific molecules, three analogues of VP16 (1, 2, and 3), recently described (Duca et al. J. Med. Chem. 2005, 48, 596-603), were attached to TFOs, together with a fourth one, of which the synthesis is reported here. Two different oligonucleotides, differing by the length (a 16-mer and a 20-mer), and two different linker arms between the oligonucleotide and the drug were used. The coupling reaction between the drug and the TFO was further improved. For the first time, we also report the synthesis of TFO conjugates bearing two molecules of inhibitor linked to the same oligonucleotide end. In total, 16 new conjugates were synthesized and evaluated for their ability to form triple helices. The loss in triplex stability due to the conjugation of the TFO to compounds that do not interact with DNA is compensated by the presence of the ethylene glycol linker arm. This stabilization effect is more pronounced at the 3' end than at the 5' end. All conjugates form a stable triplex selectively on the DNA target at 37 degrees C and pH 7.2.  相似文献   

13.
The nucleotide sequence specificity of neocarzinostatin (NCS), auromomycin (AUR), bleomycin (Blm), phleomycin (Phlm), and tallysomycin (Tlm) has been determined by using these antibiotics and their associated chromophores to create strand scissions in end-labeled restriction fragments of DNA and then determining the base sequence of the oligonucleotides formed. NCS and the NCS chromophore induce similar patterns of cleavage in DNA fragments labeled at the 5' terminus. The pattern produced by the AUR chromophore also resembles that of its holoantibiotic. Dithiothreitol enhances the rate of cleavage of DNA by the AUR chromophore but does not alter the sequence specificity. The results suggest that the polypeptide component of AUR and NCS serves primarily as a carrier for the chromophore. When tested with a fragment labeled at the 3' terminus, the products of NCS and AUR cleavage do not display the patterns of chemically produced oligonucleotides cleaved at phosphodiester bonds, suggesting that the 5' terminus is modified by a sugar fragment. NCS primarily attacks thymine (75% of the total bases attacked) and, to a lesser extent, adenine (19%) and cytosine (6%). AUR preferentially attacks guanine (67% of total bases), while attacking less often thymine (24%) and adenine (9%). Bleomycin and its analogues preferentially cleave purine--pyrimidine (5' leads to 3') and pyrimidine--pyrimidine (3' leads to 5') sequences. All (5' leads to 3') GT and GC sequences were cleaved. Phlm G and Phlm-Pep are less active than bleomycin toward purines while Tlm was more active. The patterns of cleavage produced by Blm A2 and Blm B6 are similar, while those produced by Phlm-Pep, Phlm G, Blm-B1', and Blm-Pep resemble one another. The cleavage pattern of Tlm shows quantitative differences from the other analogues tested. Differences between bleomycin and its analogues may be related to structural differences in these molecules.  相似文献   

14.
15.
Gu F  Xi Z  Goldberg IH 《Biochemistry》2000,39(16):4881-4891
Bulge structures in nucleic acids are of general biological significance and are potential targets for therapeutic drugs. It has been shown in a previous study that thiol-activated neocarzinostatin chromophore is able to cleave duplex DNA selectively at a position opposite a single unpaired cytosine or thymine base on the 3' side. In this work, we studied in greater detail the nature of this type of cleavage and the basis for the selectivity of the bulge site cleavage over the usual strand cleavage at a T site in the duplex region by using duplexes containing an internal control and a bulge, which is composed of different types and number of bases. Experimental results indicated that the bulge-induced cleavage is initiated by 5' hydrogen abstraction and is greatly affected by the base composition of the bulge. A single-base bulge, especially when containing a purine, yields higher efficiency and greater selectivity for the bulge-induced cleavage. In particular, a single adenine base gives rise to the highest cleavage yield and provides over 20 times greater selectivity for cleavage at the bulge site compared with the internal control site in duplexes. The binding dissociation constants of postactivated drug for a stem-loop structure containing a one- or two-base bulge in the stem, measured by fluorescence quenching, show that the binding is about 3-4 times stronger for bulge-containing duplexes than for perfect hairpin duplexes. For RNA.DNA hybrid duplexes, where the DNA is the target strand and the RNA is the bulge-containing strand, bulge-induced cleavage was observed, although at low yield. On the other hand, when RNA is the nonbulge strand, no bulge-induced cleavage was found. When the reaction is performed in the absence of oxygen, the major product is a covalent adduct, and it is at the same location as the cleavage site under aerobic conditions.  相似文献   

16.
Vaccinia DNA topoisomerase forms a covalent DNA-(3'-phosphotyrosyl)-enzyme intermediate at a specific target site 5'-C+5C+4C+3T+2T+1p downward arrow N-1 in duplex DNA. Here we study the effects of base modifications on the rate and extent of single-turnover DNA transesterification. Chiral trans opened C-10 R and S adducts of benzo[a]pyrene (BP) 7,8-diol 9,10-epoxide were introduced at single N6-deoxyadenosine (dA) positions within the 3'-G+5G+4G+3A+2A+1T-1A-2 sequence of the nonscissile DNA strand. The R and S BPdA adducts intercalate from the major groove on the 5' and 3' sides of the modified base, respectively, and perturb local base stacking. We found that R and S BPdA modifications at +1A reduced the transesterification rate by a factor of 700-1000 without affecting the yield of the covalent topoisomerase-DNA complex. BPdA modifications at +2A reduced the extent of transesterification and elicited rate decrements of 200- and 7000-fold for the S and R diastereomers, respectively. In contrast, BPdA adducts at the -2 position had no effect on the extent of the reaction and relatively little impact on the rate of cleavage. A more subtle probe of major groove contacts entailed substituting each of the purines of the nonscissile strand with its 8-oxo analog. The +3 oxoG modification slowed transesterification 35-fold, whereas other 8-oxo modifications were benign. 8-Oxo substitutions at the -1 position in the scissile strand slowed single-turnover cleavage by a factor of six but had an even greater slowing effect on religation, which resulted in an increase in the cleavage equilibrium constant. 2-Aminopurine at positions +3, +4, or +5 in the nonscissile strand had no effect on transesterification per se but had synergistic effects when combined with 8-oxoA at position -1 in the scissile strand. These findings illuminate the functional interface of vaccinia topoisomerase with the DNA major groove.  相似文献   

17.
18.
Using site-specific intercalation directed by intermolecular triplex formation, the conformation of an intercalation site in DNA was examined by footprinting with the purine-specific (A much greater than G) reagent diethylpyrocarbonate. Site specific intercalation was achieved by covalently linking an intercalator to the 5' end of a homopyrimidine oligodeoxynucleotide, which bound to a homopurinehomopyrimidine stretch in a recombinant plasmid via intermolecular triplex formation. This directs intercalation to a single site in 3kb of DNA at the 5' triplex-duplex junction. Footprinting with diethylpyrocarbonate and dimethylsulphate revealed strong protection from modification of adenine residues within the triple-helix in concordance with their Hoogsteen pairing with the third strand, and a strong hypersensitivity to diethylpyrocarbonate at the first adenine of the duplex. This result indicates that intercalation at this site induces a conformational change at the 5' triplex-duplex junction. Furthermore, the same diethlypyrocarbonate hypersensitivity was observed with an unmodified triple-strand forming oligonucleotide and a range of intercalating molecules present in solution. Thus the 5' triplex-duplex junction is a strong binding site for some intercalating molecules and the junction undergoes a conformational change which is sensitive to diethylpyrocarbonate upon insertion of the planar aromatic chromophore. This conformational change can be used to direct a single-strand cut in duplex DNA to a defined site.  相似文献   

19.
Alkylation of a single-stranded DNA 302-mer by a 5'-O-phosphoryl-[4-(N-2-chloroethyl-N-methylamino)benzyl]amide derivative of the tetradeoxyribonucleotide d(pApGpCpA) in the presence of 3',5'-di-N-(2-hydroxyethyl) phenazinium derivatives of tetranucleotides as effectors led to specific chemical cleavage of the target at the guanosine residues of the sites ... pTpGppT. The reagent can be selectively addressed to one of three alkylation sites with the aid of a pair of tetranucleotide effectors flanking the chemically reactive tetranucleotide in the complex with the target DNA. The yield of the cleavage depends on the concentration of both the reagent and effectors, and can be enhanced, if a chain of two or more effectors from each side of the reagent is used. In this case, 3',5'-di-Phn-tetranucleotide effectors are to immediately flank the reagent.  相似文献   

20.
Photomodification of ssDNA by binary systems of oligonucleotide conjugates complementary to the adjacent sequences of the target DNA was studied. One of the conjugates comprised a substituted anthracene as a sensitizer; the other, p-azidotetrafluorobenzaldehyde 3-aminopropionylhydrazone as a photoreagent. The sensitized photomodification is initiated by the 365-580-nm light through an efficient energy transfer from the photoexcitated sensitizer onto the photoreagent in a complementary complex of the binary system with the DNA target where the sensitizer and the photoreagent are sterically converged. Influence of substituents in the anthracene residue on the efficiency of the DNA sensitized photomodification was considered. The oligonucleotide conjugate of anthracene-9-al 3-aminopropionylhydrazone allows highly specific initiation of the sensitized photomodification upon irradiation with visible light at > 460 nm in conditions generating no photoreaction in the sensitizer's absence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号