首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Stress-activated protein kinase/c-Jun NH(2)-terminal kinase (SAPK/JNK), which is a member of the mitogen-activated protein kinase (MAPK) family, plays an important role in a stress-induced signaling cascade. SAPK/JNK activation requires the phosphorylation of Thr and Tyr residues in its Thr-Pro-Tyr motif, and SEK1 (MKK4) and MKK7 (SEK2) have been identified as the upstream MAPK kinases. Here we examined the activation and phosphorylation sites of SAPK/JNK and differentiated the contribution of SEK1 and MKK7alpha1, -gamma1, and -gamma2 isoforms to the MAPK activation. In SEK1-deficient mouse embryonic stem cells, stress-induced SAPK/JNK activation was markedly impaired, and this defect was accompanied with a decreased level of the Tyr phosphorylation. Analysis in HeLa cells co-transfected with the two MAPK kinases revealed that the Thr and Tyr of SAPK/JNK were independently phosphorylated in response to heat shock by MKK7gamma1 and SEK1, respectively. However, MKK7alpha1 failed to phosphorylate the Thr of SAPK/JNK unless its Tyr residue was phosphorylated by SEK1. In contrast, MKK7gamma2 had the ability to phosphorylate both Thr and Tyr residues. In all cases, the dual phosphorylation of the Thr and Tyr residues was essentially required for the full activation of SAPK/JNK. These data provide the first evidence that synergistic activation of SAPK/JNK requires both phosphorylation at the Thr and Tyr residues in living cells and that the preference for the Thr and Tyr phosphorylation was different among the members of MAPK kinases.  相似文献   

2.
Stress-activated protein kinase/c-Jun NH(2)-terminal kinase (SAPK/JNK), belonging to the mitogen-activated protein kinase family, plays an important role in stress signaling. SAPK/JNK activation requires the phosphorylation of both Thr and Tyr residues in its Thr-Pro-Tyr motif, and SEK1 and MKK7 have been identified as the dual specificity kinases. In this study, we generated mkk7(-/-) mouse embryonic stem (ES) cells in addition to sek1(-/-) cells and compared the two kinases in terms of the activation and phosphorylation of JNK. Although SAPK/JNK activation by various stress signals was markedly impaired in both sek1(-/-) and mkk7(-/-) ES cells, there were striking differences in the dual phosphorylation profile. The severe impairment observed in mkk7(-/-) cells was accompanied by a loss of the Thr phosphorylation of JNK without marked reduction in its Tyr-phosphorylated level. On the other hand, Thr phosphorylation of JNK in sek1(-/-) cells was also attenuated in addition to a decreased level of its Tyr phosphorylation. Analysis in human embryonic kidney 293T cells transfected with a kinase-dead SEK1 or a Thr-Pro-Phe mutant of JNK1 revealed that SEK1-induced Tyr phosphorylation of JNK1 was followed by additional Thr phosphorylation by MKK7. Furthermore, SEK1 but not MKK7 was capable of binding to JNK1 in 293T cells. These results indicate that the Tyr and Thr residues of SAPK/JNK are sequentially phosphorylated by SEK1 and MKK7, respectively, in the stress-stimulated ES cells.  相似文献   

3.
The c-Jun N-terminal kinases (JNKs) are activated in response to stress, DNA damage, and cytokines by MKK4 and MKK7. We recently demonstrated that PKC can augment the degree of JNK activation by phosphorylating JNK, which requires the adaptor protein RACK1. Here we report on the conditions required for PKC-dependent JNK activation. In vitro kinase assays reveal that PKC phosphorylation of JNK is not sufficient for its activation but rather augments JNK activation by canonical JNK upstream kinases MKK4 or MKK7 alone or in combination. Further, to enhance JNK activity, PKC phosphorylation of JNK should precede its phosphorylation by MKK4/7. Inhibition of PKC phosphorylation of JNK affects both early and late phases of JNK activation following UV-irradiation and reduces the apoptotic response mediated by JNK. These data provide important insight into the requirements for PKC activation of JNK signaling.  相似文献   

4.
Inhibition of protein synthesis per se does not potentiate the stress-activated protein kinases (SAPKs; also known as cJun NH2-terminal kinases [JNKs]). The protein synthesis inhibitor anisomycin, however, is a potent activator of SAPKs/JNKs. The mechanism of this activation is unknown. We provide evidence that in order to activate SAPK/JNK1, anisomycin requires ribosomes that are translationally active at the time of contact with the drug, suggesting a ribosomal origin of the anisomycin-induced signaling to SAPK/JNK1. In support of this notion, we have found that aminohexose pyrimidine nucleoside antibiotics, which bind to the same region in the 28S rRNA that is the target site for anisomycin, are also potent activators of SAPK/JNK1. Binding of an antibiotic to the 28S rRNA interferes with the functioning of the molecule by altering the structural interactions of critical regions. We hypothesized, therefore, that such alterations in the 28S rRNA may act as recognition signals to activate SAPK/JNK1. To test this hypothesis, we made use of two ribotoxic enzymes, ricin A chain and alpha-sarcin, both of which catalyze sequence-specific RNA damage in the 28S rRNA. Consistent with our hypothesis, ricin A chain and alpha-sarcin were strong agonists of SAPK/JNK1 and of its activator SEK1/MKK4 and induced the expression of the immediate-early genes c-fos and c-jun. As in the case of anisomycin, ribosomes that were active at the time of exposure to ricin A chain or alpha-sarcin were able to initiate signal transduction from the damaged 28S rRNA to SAPK/JNK1 while inactive ribosomes were not.  相似文献   

5.
6.
7.
Interleukin 1beta (IL-1beta) induces expression of the inducible nitric-oxide synthase (iNOS) with concomitant release of nitric oxide (NO) from glomerular mesangial cells. These events are preceded by activation of the c-Jun NH(2)-terminal kinase/stress-activated protein kinase (JNK/SAPK) and p38(MAPK). Our current study demonstrates that overexpression of the dominant negative form of JNK1 or p54 SAPKbeta/JNK2 significantly reduces the iNOS protein expression and NO production induced by IL-1beta. Similarly, overexpression of the kinase-dead mutant form of p38alpha(MAPK) also inhibits IL-1beta-induced iNOS expression and NO production. In previous studies we demonstrated that IL-1beta can activate MKK4/SEK1, MKK3, and MKK6 in renal mesangial cells; therefore, we examined the role of these MAPK kinases in the modulation of iNOS induced by IL-1beta. Overexpression of the dominant negative form of MKK4/SEK1 decreases IL-1beta-induced iNOS expression and NO production with inhibition of both SAPK/JNK and p38(MAPK) phosphorylation. Overexpression of the kinase-dead mutant form of MKK3 or MKK6 demonstrated that either of these two mutant kinase inhibited IL-1beta-induced p38(MAPK) (but not JNK/SAPK) phosphorylation and iNOS expression. Interestingly overexpression of wild type MKK3/6 was associated with phosphorylation of p38(MAPK); however, in the absence of IL-1beta, iNOS expression was not enhanced. This study suggests that the activation of both SAPK/JNK and p38alpha(MAPK) signaling cascades are necessary for the IL-1beta-induced expression of iNOS and production of NO in renal mesangial cells.  相似文献   

8.
JNK/SAPK activity contributes to TRAIL-induced apoptosis   总被引:5,自引:0,他引:5  
We report here that JNK/SAPKs are activated by TRAIL in parallel to induction of apoptosis in human T and B cell lines. Death signaling as well as JNK/SAPK activation by TRAIL in these cells is FADD- and caspase-dependent since dominant-negative FADD or the caspase inhibitor zVAD prevented both, apoptosis and JNK/SAPK activity. JNK/SAPK activity in response to triggering of CD95 by an agonistic antibody (alphaAPO-1) was also diminished by dominant-negative FADD or zVAD. Correspondingly, a cell line resistant to alphaAPO-1-induced death exhibited crossresistance to TRAIL-induced apoptosis and did not upregulate JNK/SAPK activity in response to TRAIL or alphaAPO-1. Inhibition of JNK/SAPK activity, by stably transfecting cells with a dominant-negative JNKK-MKK4 construct, reduced apoptosis in response to TRAIL or alphaAPO-1. Therefore, activation of JNK/SAPKs by TRAIL or alphaAPO-1 occurs downstream of FADD and caspases and contributes to apoptosis in human lymphoid cell lines.  相似文献   

9.
10.
c-Jun N-terminal kinases (JNKs) are important regulators of cell proliferation and apoptosis that have been implicated in tumorigenesis. We investigated the role of JNKs in apoptotic responses in Ishikawa and HEC-50 cells, models of type I and type II endometrial cancer, respectively. Etoposide treatment or UV irradiation resulted in sustained activation of JNK, correlating with the induction of apoptosis. Inhibition of JNK, or MAP kinase kinase 4 (MKK4), selectively suppressed apoptotic responses in both Ishikawa and HEC-50 cells. Knockdown of protein kinase C δ (PKCδ) also attenuated apoptosis in endometrial cancer cells and inhibited the sustained, UV-mediated JNK activation in HEC-50, but not Ishikawa cells. Etoposide-induced JNK phosphorylation was unaffected by PKCδ knockdown, implying that JNK can regulate apoptosis by PKCδ-dependent and independent pathways, according to stimulus and cell type. Thus, expression and activity of JNK and PKCδ in endometrial cancer cells modulate apoptosis and sensitivity to chemotherapeutic agents and may function as tumor suppressors in the endometrium. Elaine M. Reno and James M. Haughian are first authors.  相似文献   

11.
MLK-3 activates the SAPK/JNK and p38/RK pathways via SEK1 and MKK3/6.   总被引:19,自引:2,他引:17       下载免费PDF全文
Mixed lineage kinase-3 (MLK-3) is a 97 kDa serine/threonine kinase with multiple interaction domains, including a Cdc42 binding motif, but unknown function. Cdc42 and the related small GTP binding protein Rac1 can activate the SAPK/JNK and p38/RK stress-responsive kinase cascades, suggesting that MLK-3 may have a role in upstream regulation of these pathways. In support of this role, we demonstrate that MLK-3 can specifically activate the SAPK/JNK and p38/RK pathways, but has no effect on the activation of ERKs. Immunoprecipitated MLK-3 catalyzed the phosphorylation of SEK1 in vitro, and co-transfected MLK-3 induced phosphorylation of SEK1 and MKK3 at sites required for activation, suggesting direct regulation of these protein kinases. Furthermore, interactions between MLK-3 and SEK and MLK-3 and MKK6 were observed in co-precipitation experiments. Finally, kinase-dead mutants of MLK-3 blocked activation of the SAPK pathway by a newly identified mammalian analog of Ste20, germinal center kinase, but not by MEKK, suggesting that MLK-3 functions to activate the SAPK/JNK and p38/RK cascades in response to stimuli transduced by Ste20-like kinases.  相似文献   

12.
c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) is involved in the regulation of various cellular functions including cell cycle, proliferation, apoptosis. However, whether JNK/SAPK directly regulates the angiogenesis of human umbilical vein endothelial cells (HUVECs) induced by vascular endothelial growth factor A (VEGFA) has not yet been fully elucidated. Our present study firstly demonstrated VEGFA-induced angiogenic responses including the increase of cell viability, migration, and tube formation with a concentration-dependent manner in HUVECs. Further results showed that VEGFA induced the activation of JNK/SAPK, p38 kinase and extracellular signal-regulated kinases 1 and 2 (ERK1/2), while JNK/SAPK inhibitor SP600125 and specific siRNA both blocked all those angiogenic effects induced by VEGFA. Furthermore, VEGFA induced the phosphorylation of ASK1, SEK1/MKK4, MKK7, and c-Jun, which are upstream or downstream signals of JNK/SAPK. In addition, in vivo matrigel plug assay further showed that SP600125 inhibited VEGFA-induced angiogenesis. Further results showed that SP600125 and JNK/SAPK siRNA decreased VEGFA-induced VEGFR2 (Flk-1/KDR) sustained phosphorylation in HUVECs. Taken together, all these results demonstrate that JNK/SAPK regulates VEGFA-induced VEGFR2 sustained phosphorylation, which plays important roles in VEGFA-induced angiogenesis in HUVECs.  相似文献   

13.
14.
15.
Non-visual arrestins scaffold mitogen-activated protein kinase (MAPK) cascades. The c-Jun N-terminal kinases (JNKs) are members of MAPK family. Arrestin-3 has been shown to enhance the activation of JNK3, which is expressed mainly in neurons, heart, and testes, in contrast to ubiquitous JNK1 and JNK2. Although all JNKs are activated by MKK4 and MKK7, both of which bind arrestin-3, the ability of arrestin-3 to facilitate the activation of JNK1 and JNK2 has never been reported. Using purified proteins we found that arrestin-3 directly binds JNK1α1 and JNK2α2, interacting with the latter comparably to JNK3α2. Phosphorylation of purified JNK1α1 and JNK2α2 by MKK4 or MKK7 is increased by arrestin-3. Endogenous arrestin-3 interacted with endogenous JNK1/2 in different cell types. Arrestin-3 also enhanced phosphorylation of endogenous JNK1/2 in intact cells upon expression of upstream kinases ASK1, MKK4, or MKK7. We observed a biphasic effect of arrestin-3 concentrations on phosphorylation of JNK1α1 and JNK2α2 both in vitro and in vivo. Thus, arrestin-3 acts as a scaffold, facilitating JNK1α1 and JNK2α2 phosphorylation by MKK4 and MKK7 via bringing JNKs and their activators together. The data suggest that arrestin-3 modulates the activity of ubiquitous JNK1 and JNK2 in non-neuronal cells, impacting the signaling pathway that regulates their proliferation and survival.  相似文献   

16.
17.
JNK-mediated BIM phosphorylation potentiates BAX-dependent apoptosis   总被引:28,自引:0,他引:28  
  相似文献   

18.
Previous studies have implicated stress-activated protein kinases (SAPKs) in aberrant phosphorylation of the high-molecular-mass neurofilament subunit (NFH). We now present direct evidence for this involvement using CEP-1347, a specific inhibitor of SAPK activation. Inhibition by this drug of stress-induced phosphorylation of NFH and the middle-molecular-mass neurofilament subunit in the perikaryon of dorsal root ganglion (DRG) neurons paralleled the decrease in levels of activated SAPKs and was essentially complete at 1 microM: CEP-1347. In addition, a role for SAPKs in the constitutive phosphorylation of NFH was demonstrated. Longterm treatment of unstressed DRG neurons with CEP-1347 lowered the steady-state phosphorylation level of NFH in neurites. No such effect was seen in neurons treated with PD 098059, which blocks activation of extracellular signal-regulated kinase 1/2. DRG neurites were shown to contain high basal levels of activated SAPKs. These included a 55-kDa SAPK whose activation was completely abolished at 0.05 microM: CEP-1347 and a 45-kDa SAPK that was not affected by the drug. These results indicate that SAPKs are involved in both stress-induced and constitutive phosphorylation of NFH. The differing responses of SAPKs in neurites and cell bodies to CEP-1347 inhibition further suggest the presence of different signaling pathways in the two neuronal compartments.  相似文献   

19.
Although genotoxic agents are powerful inducers of stress kinases (SAPK/JNK), the contribution of DNA damage itself to this response is unknown. Therefore, SAPK/JNK activation of cells harboring specific defects in DNA damage-recognition mechanisms was studied. Dual phosphorylation of SAPK/JNK by the genotoxin methyl methanesulfonate (MMS) occurred in two waves. The early response (< or = 2 h after exposure) was similar in cells knockout for ATM, PARP, p53, and CSB or defective in DNA-PK(cs) compared with wild-type cells. The late response however (> or = 4 h), was drastically reduced in DNA-PK(cs) and Cockayne's syndrome B (CSB)-deficient cells. Similar results were obtained with human cells lacking DNA-PK(cs) and CSB. Activation of SAPK/JNK by MMS was not affected upon inhibition of base excision repair (BER), indicating base damage itself does not signal to SAPK/JNK. Because SAPK/JNK activation was attenuated in nongrowing cells, DNA replication-dependent processing of lesions, involving DNA-PK(cs) and CSB, appears to be required. DNA-PK(cs) coprecipitates with SEK1/MKK4 and SAPK/JNK, supporting a role of DNA-PK(cs) in SAPK/JNK activation. In this process, Rho GTPases are involved since inhibition of Rho impairs MMS-induced signaling to SAPK/JNK. The data show that sensing of DNA damage by DNA-PK(cs) and CSB causes a delayed SEK1/MKK4-mediated dual phosphorylation of SAPK/JNK.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号