首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensitive and simple micromethod for the accurate measurement of GMP reductase (EC 1.6.6.8) activity in crude extracts is described. The reaction product of [8-14C]IMP was separated from the substrate [8-14C]GMP by descending chromatography on Whatman DE81 ion-exchange paper. This separation method provides an analysis of the possible interfering reactions, such as the metabolic conversion of the substrate GMP to GDP, GTP, and/or guanosine, and guanine and the loss of the product IMP to inosine, hypoxanthine, and other metabolites. Low blank values (70-90 cpm) were obtained consistently with this assay because the IMP spot moves faster than the GMP spot. The major advantages of this method are direct measurement of GMP reductase activity in crude extracts, high sensitivity (with a limit of detection of < 10 pmol of IMP production), high reproducibility (< +/- 5%), and capability to measure activity in small samples (9 micrograms protein).  相似文献   

2.
In this paper, we show that in vitro xanthosine does not enter any of the pathways known to salvage the other three main natural purine nucleosides: guanosine; inosine; and adenosine. In rat brain extracts and in intact LoVo cells, xanthosine is salvaged to XMP via the phosphotransferase activity of cytosolic 5'-nucleotidase. IMP is the preferred phosphate donor (IMP + xanthosine --> XMP + inosine). XMP is not further phosphorylated. However, in the presence of glutamine, it is readily converted to guanyl compounds. Thus, phosphorylation of xanthosine by cytosolic 5'-nucleotidase circumvents the activity of IMP dehydrogenase, a rate-limiting enzyme, catalyzing the NAD(+)-dependent conversion of IMP to XMP at the branch point of de novo nucleotide synthesis, thus leading to the generation of guanine nucleotides. Mycophenolic acid, an inhibitor of IMP dehydrogenase, inhibits the guanyl compound synthesis via the IMP dehydrogenase pathway but has no effect on the cytosolic 5'-nucleotidase pathway of guanine nucleotides synthesis. We propose that the latter pathway might contribute to the reversal of the in vitro antiproliferative effect exerted by IMP dehydrogenase inhibitors routinely seen with repletion of the guanine nucleotide pools.  相似文献   

3.
Derepression of the synthesis of inosine 5′-monophosphate (IMP) dehydrogenase and of xanthosine 5′-monophosphate (XMP) aminase in pur mutants of Escherichia coli which are blocked in the biosynthesis of adenine nucleotides and guanine nucleotides differs in two ways from derepression in pur mutants blocked exclusively in the biosynthesis of guanine nucleotides. (i) The maximal derepression is lower, and (ii) a sharp decrease in the specific activities of AMP dehydrogenase and XMP aminase occurs, following maximal derepression. From the in vivo and in vitro experiments described, it is shown that the lack of adenine nucleotides in derepressed pur mutants blocked in the biosynthesis of adenine and guanine nucleotides is responsible for these two phenomena. The adenine nucleotides are shown to play an important regulatory role in the biosynthesis of guanosine 5′-monophosphate (GMP). (i) They induce the syntheses of IMP dehydrogenase and XMP aminase. (The mechanism of induction may involve the expression of the gua operon.) (ii) They appear to have an activating function in IMP dehydrogenase and XMP aminase activity. The physiological importance of these regulatory characteristics of adenine nucleotides in the biosynthesis of GMP is discussed.  相似文献   

4.
Tuberculosis (TB) remains a leading cause of mortality worldwide. With the emergence of multidrug resistant TB, extensively drug resistant TB and HIV-associated TB it is imperative that new drug targets be identified. The potential of Mycobacterium tuberculosis inosine monophosphate dehydrogenase (IMPDH) as a novel drug target was explored in the present study. IMPDH exclusively catalyzes the conversion of inosine monophosphate (IMP) to xanthosine monophosphate (XMP) in the presence of the cofactor nicotinamide adenine dinucleotide (NAD(+)). Although the enzyme is a dehydrogenase, the enzyme does not catalyze the reverse reaction i.e. the conversion of XMP to IMP. Unlike other bacteria, M. tuberculosis harbors three IMPDH-like genes, designated as Mt-guaB1, Mt-guaB2 and Mt-guaB3 respectively. Of the three putative IMPDH's, we previously confirmed that Mt-GuaB2 was the only functional ortholog by characterizing the enzyme kinetically. Using an in silico approach based on designed scaffolds, a series of novel classes of inhibitors was identified. The inhibitors possess good activity against M. tuberculosis with MIC values in the range of 0.4 to 11.4 μg mL(-1). Among the identified ligands, two inhibitors have nanomolar K(i)s against the Mt-GuaB2 enzyme.  相似文献   

5.
Tiazofurin was demonstrated to be an effective inhibitor of the growth of human cultured blast cells, and the high specific activities of IMP dehydrogenase (EC 1.1.1.205) were observed in all the cell extracts tested. IMP dehydrogenase has been purified to homogeneity from MOLT 4F human T-lymphoblast, and the Km values for IMP and NAD were 29 and 54 microM, respectively. The inhibitory mechanisms of thiazole-4-carboxamide adenine dinucleotide (TAD) and ribavirin 5'-monophosphate (RMP), the active forms of the antimetabolites tiazofurin and ribavirin, were investigated on the purified enzyme. RMP inhibits competitively with respect to IMP as well as XMP, and the inhibition by TAD was similar to that by NADH, which was uncompetitive with NAD. However, the Ki values of RMP (0.58 microM) and TAD (0.075 microM) were several orders of magnitude lower than those of XMP (85 microM) and NADH (94 microM). Thus, the drugs interact with the two distinct sites of IMP dehydrogenase with much higher affinities than the natural substrates and products. Preincubation of the purified enzyme with RMP enhanced its inhibitory effect in a time-dependent manner, and the enhancement was further increased by the addition of TAD. The combination of tiazofurin and ribavirin exerted a synergistic effect on the growth inhibition in MOLT 4F cells.  相似文献   

6.
Y Yamada  Y Natsumeda  G Weber 《Biochemistry》1988,27(6):2193-2196
The inhibitory mechanisms of ribavirin 5'-monophosphate (RMP) and thiazole-4-carboxamide adenine dinucleotide (TAD), the active forms of the antimetabolites ribavirin and tiazofurin, were investigated in IMP dehydrogenase purified to homogeneity from rat hepatoma 3924A. The hepatoma IMP dehydrogenase has a tetrameric structure with a subunit molecular weight of 60,000. For the substrates IMP and NAD+, Km's were 23 and 65 microM, respectively. Product-inhibition patterns showed an ordered Bi-Bi mechanism for the enzyme reaction where IMP binds to the enzyme first, followed by NAD+; NADH dissociates from the ternary complex first and then XMP is released. XMP interacts with the free enzyme and competes for the ligand site with IMP, while NADH binds to the enzyme-XMP complex. RMP exerted the same inhibitory mechanisms as XMP, and the inhibition by TAD was similar to that by NADH. However, the Ki values for RMP (0.8 microM) and TAD (0.13 microM) were orders of magnitude lower than those of XMP (136 microM) and NADH (210 microM). Thus, the drugs interact with IMP dehydrogenase with higher affinities than the natural substrates and products, RMP with the IMP-XMP site and TAD with the NADH site. Preincubation of the purified enzyme with RMP enhanced its inhibitory effect in a time-dependent manner. The enzyme was protected from this inactivation by IMP or XMP. These results provide a biochemical basis for combination chemotherapy with tiazofurin and ribavirin targeted against the two different ligand sites of IMP dehydrogenase.  相似文献   

7.
Guanine auxotrophs of Escherichia coli K-12 were isolated after mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine, ethyl methane sulfonate, or the acridine mustard ICR 372. guaA (xanthosine 5'-monophosphate [XMP] aminase-less) mutants were distinguished from guaB (inosine 5'-monophosphate [IMP] dehydrogenase-less) mutants by their growth response to xanthine and by enzyme assay. Mutations were classified as base substitutions or frameshift on the basis of mutagen-induced reversion patterns. All guaA strains, including three frameshift mutants, produced derepressed levels of IMP dehydrogenase when cultured with a growth-limiting concentration of guanine. The guaB strains were of two types: (i) those producing derepressed levels of XMP aminase, and (ii) those producing basal levels of XMP aminase when grown under conditions of guanine starvation. In the guaB strains of the second type, the expression of the adjacent guaA gene is reduced. It is proposed that this pleiotropic effect of some guaB mutations is a result of polarity. The orientation of polarity suggests the gene order "operator"-guaB-guaA. Gel diffusion studies with IMP dehydrogenase antiserum showed that strains carrying polar guaB mutations do not produce cross-reacting material (CRM). The remaining guaB mutants were either CRM(+) or CRM(-). Mapping the mutations by three-factor crosses showed that polar and nonpolar guaB sites are clustered in a small genetic region cotransducible with guaA. The relative positions of the guaB mutational sites established that the polar mutations lie within the structural gene for IMP dehydrogenase.  相似文献   

8.
The antiviral activity of ribavirin has been associated with its inhibition of the enzyme, IMP dehydrogenase. The ability of ribavirin to inhibit this enzyme has previously been shown to be related to its stability in the high anti glycosidic conformation. The antiviral effectiveness of several analogs of ribavirin have been investigated recently. The evidence indicates their antiviral effectiveness is related to their stability in the high anti conformation. Recently the disposition of purine analogs that pass through the inosine monophosphate branch point has been investigated. The results of these studies are consistent with the concept that the conversion of IMP to XMP requires the high anti conformation and that the conversion of IMP to adenylosuccinate requires some other conformation, possibly the anti conformation.  相似文献   

9.
A major problem involved in the direct fermentation of nucleotides is their breakdown by phosphohydrolases. Thus, adenine auxotrophs of most microorganisms produce hypoxanthine and/or inosine rather than inosine 5′-monophosphate (IMP) while guanine auxotrophs excrete xanthosine rather than xanthosine 5′-monophosphate (XMP). Examination of a Bacillus subtilis mutant producing hypoxanthine plus inosine revealed at least four phosphohydrolases, three of which could attack nucleotides. Even when the extracellular nucleotide phosphohydrolase was inhibited by Cu+2 and its surface-bound alkaline phosphohydrolase was repressed and inhibited by inorganic phosphate, or removed by mutation, the breakdown products were still the only products of fermentation. Under these conditions, the third enzyme, a surface-bound non-repressible nucleotide phosphohydrolase was still active. It appears, at least in B. subtilis, that excretion is dependent upon breakdown by this enzyme and if hydrolysis does not occur, excretion of purine nucleotides is feedback inhibited by the resultant high intracellular IMP concentration. Corynebacterium glutamicum mutants, on the other hand, can excrete intact nucleotides, and direct fermentations for IMP, XMP, and GMP have been described. An examination of phosphohydrolases in a GMP-producing culture revealed no extracellular or surface enzymes. Disruption of the cells resulted in liberation of cellular phosphohydrolase activity with a substrate specificity remarkably similar to the flavorenhancing properties of the 5′-nucleotides. The order of decreasing susceptibility was GMP, IMP, XMP; AMP was not attacked.  相似文献   

10.
《Phytochemistry》1986,25(10):2267-2270
5′-Nucleotidase from pigeonpea nodules has been resolved into two forms, N-I and N-II, having M,s of 52 000 and 119 000, respectively. Both forms had pH optima in the acidic range (between pH 5.2 and 5.7) with either CMP, GMP, XMP, IMP or AMP as the substrate. Up to pH 6.6, both forms showed higher activity with CMP followed by GMP, XMP, IMP and AMP, respectively. However, the activity changed with pH in the alkaline range making the enzyme relatively more active with purine nucleotides. Neither of the forms had a requirement for any of the metal ions tested. Fe3+ inhibited the enzyme activity; the inhibition at 5, 10 and 15 mM concentrations being 11, 43 and 47%, respectively with N-I and 14,47 and 52%, respectively with N-II. Km values for AMP, IMP, GMP, CMP and XMP were 0.10, 0.18, 0.40, 0.40 and 0.77 mM, respectively with N-I and 0.12, 0.20, 0.40, 0.40 and 0.99 mM, respectively with N-II. The enzyme was inhibited non-competitively by adenosine and inosine; Ki values being 1.78, 0.25 and 0.30; 3.50, 2.12 and 0.75 mM, respectively with AMP, IMP and XMP as the substrate.  相似文献   

11.
The oxidation of IMP to XMP is the rate-limiting step in the de novo synthesis of guanine ribonucleotides. This NAD-dependent reaction is catalyzed by the enzyme inosine monophosphate dehydrogenase (IMPDH). Based upon the recent structural determination of IMPDH complexed to oxidized IMP (XMP*) and the potent uncompetitive inhibitor mycophenolic acid (MPA), we have selected active site residues and prepared mutants of human type II IMPDH. The catalytic parameters of these mutants were determined. Mutations G326A, D364A, and the active site nucleophile C331A all abolish enzyme activity to less than 0.1% of wild type. These residues line the IMP binding pocket and are necessary for correct positioning of the substrate, Asp364 serving to anchor the ribose ring of the nucleotide. In the MPA/NAD binding site, significant loss of activity was seen by mutation of any residue of the triad Arg322, Asn303, Asp274 which form a hydrogen bonding network lining one side of this pocket. From a model of NAD bound to the active site consistent with the mutational data, we propose that these resides are important in binding the ribose ring of the nicotinamide substrate. Additionally, mutations in the pair Thr333, Gln441, which lies close to the xanthine ring, cause a significant drop in the catalytic activity of IMPDH. It is proposed that these residues serve to deliver the catalytic water molecule required for hydrolysis of the cysteine-bound XMP* intermediate formed after oxidation by NAD.  相似文献   

12.
L Hedstrom  C C Wang 《Biochemistry》1990,29(4):849-854
Inosine 5'-monophosphate dehydrogenase (IMPDH) catalyzes the oxidation of inosine 5'-monophosphate (IMP) to xanthosine 5'-monophosphate (XMP) with the conversion of NAD to NADH. An ordered sequential mechanism where IMP is the first substrate bound and XMP is the last product released was proposed for Tritrichomonas foetus IMPDH on the basis of product inhibition studies. Thiazole adenine dinucleotide (TAD) is an uncompetitive inhibitor versus IMP and a noncompetitive inhibitor versus NAD, which suggests that TAD binds to both E-IMP and E-XMP. Mycophenolic acid is also an uncompetitive inhibitor versus IMP and noncompetitive versus NAD. Multiple-inhibitor experiments show that TAD and mycophenolic acid are mutually exclusive with each other and with NADH. Therefore, mycophenolic acid most probably binds to the dinucleotide site of T. foetus IMPDH. The mycophenolic acid binding site was further localized to the nicotinamide subsite within the dinucleotide site: mycophenolic acid was mutually exclusive with tiazofurin, but could form ternary enzyme complexes with ADP or adenosine diphosphate ribose. NAD inhibits the IMPDH reaction at concentrations greater than 3 mM. NAD substrate inhibition is uncompetitive versus IMP, which suggests that NAD inhibits by binding to E-XMP. TAD is mutually exclusive with both NAD and NADH in multiple-inhibitor experiments, which suggests that there is one dinucleotide binding site. The ordered mechanism predicts that multiple-inhibitor experiments with XMP and TAD, mycophenolic acid, or NAD should have an interaction constant (alpha) between 0 and 1. However, alpha was greater than 1 in all cases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Dual inhibitory effect of bredinin   总被引:2,自引:0,他引:2  
Bredinin inhibition of cell growth was investigated in the mouse lymphoma cell line L5178Y. Bredinin caused the accumulation of IMP and the reduction of XMP. It was converted to the 5'-phosphate within the cells. Bredinin 5'-phosphate but not bredinin competitively inhibited both IMP dehydrogenase and GMP synthetase. Thus the inhibition of cell growth is probably due to bredinin 5'-phosphate, which inhibits the consecutive enzyme reactions IMP dehydrogenase and GMP synthetase. These inhibitions result in the accumulation of IMP and the reduction of XMP.  相似文献   

14.
During contractions, when the rate of ATP hydrolysis exceeds that of ADP phosphorylation, inosine 5'-monophosphate (IMP) accumulates in skeletal muscle. If the cellular energy balance is not promptly restored, subsequent purine degradation to inosine via 5'-nucleotidase can occur, a process that is most robust in the slow-twitch red, as compared to fast-twitch, skeletal muscle. We measured the distribution of 5'-nucleotidase activity among membrane-bound and soluble fractions of fiber specific skeletal muscle sections and found most (80-90%) of the total 5'-nucleotidase activity to be membrane-bound. The 5' IMP nucleotidase activity present in the soluble fraction of muscle extracts differs among fiber types with slow-twitch red > fast-twitch red > mixed fibered > fast-twitch white. Experiments testing the substrate dependence of IMP and AMP dephosphorylation by the soluble fraction of muscle extracts revealed a lower Km toward IMP (approximately 0.7-1.5 mM) than AMP (1.9-2.8 mM). Among skeletal muscle fiber sections, the soluble 5'-nucleotidase activity present in slow-twitch red muscle extracts had the highest substrate affinity, the highest activity with IMP as substrate, and an estimated catalytic efficiency (Vmax/Km) that was > 3-fold higher than calculated for fast-twitch muscle extracts. This is likely due to the Mg2+ dependent cytosolic 5' IMP nucleotidase isoform, since immunoprecipitation experiments revealed 3-4 times more activity in slow-twitch red than in fast-twitch red or fast-twitch white fibers, respectively. These finding are consistent with the previously recognized in vivo pattern of nucleoside formation by muscle where the soleus demonstrated extensive inosine formation at a much lower IMP content than fast-twitch red or fast-twitch white muscle fiber sections.  相似文献   

15.
Mycophenolic acid (MA) was demonstrated to be an effective inhibitor of the growth of the intracellular parasitic protozoan Eimeria tenella in tissue culture and guanine was shown to reverse this inhibition as expected for an inhibitor of IMP dehydrogenase (IMP:NAD+ oxidoreductase, EC 1.1.1.205). A high performance liquid chromatography study of the intracellular nucleotide pools labeled with [3H]hypoxanthine was carried out in host cells lacking hypoxanthine-guanine phosphoribosyltransferase, and the depletion of guanine nucleotides demonstrated that the intracellular parasite enzyme was being inhibited by the drug. Kinetic studies carried out on the enzyme derived from E. tenella oocysts demonstrated substrate inhibition by NAD and mycophenolic acid inhibition similar to that found for mammalian enzymes, but different from that for bacterial enzymes. The inhibition by mycophenolic acid was not time-dependent and was immediately reversed upon dilution. As found previously for other IMP dehydrogenases, an Ordered Bi-Bi mechanism prevails with IMP on first followed by NAD, NADH off first, and then XMP. The kinetic patterns are consistent with substrate inhibition at high concentrations of NAD due to the formation of an E X XMP X NAD complex. Uncompetitive inhibition by MA versus IMP, NAD, and K+ was found and this was interpreted as evidence for the formation of an E X XMP X MA complex. A speculative mechanism for the inhibition of the enzyme is offered which is consistent with the fact that E X XMP X MA readily forms, whereas E X IMP X MA does not.  相似文献   

16.
Inosine 5'-monophosphate dehydrogenase (IMPDH) catalyzes the first unique step of the GMP branch of the purine nucleotide biosynthetic pathway. This enzyme is found in organisms of all three kingdoms. IMPDH inhibitors have broad clinical applications in cancer treatment, as antiviral drugs and as immunosuppressants, and have also displayed antibiotic activity. We have determined three crystal structures of Bacillus anthracis IMPDH, in a phosphate ion-bound (termed "apo") form and in complex with its substrate, inosine 5'-monophosphate (IMP), and product, xanthosine 5'-monophosphate (XMP). This is the first example of a bacterial IMPDH in more than one state from the same organism. Furthermore, for the first time for a prokaryotic enzyme, the entire active site flap, containing the conserved Arg-Tyr dyad, is clearly visible in the structure of the apoenzyme. Kinetic parameters for the enzymatic reaction were also determined, and the inhibitory effect of XMP and mycophenolic acid (MPA) has been studied. In addition, the inhibitory potential of two known Cryptosporidium parvum IMPDH inhibitors was examined for the B. anthracis enzyme and compared with those of three bacterial IMPDHs from Campylobacter jejuni, Clostridium perfringens, and Vibrio cholerae. The structures contribute to the characterization of the active site and design of inhibitors that specifically target B. anthracis and other microbial IMPDH enzymes.  相似文献   

17.
The conversion of inosine 5'-monophosphate (IMP) to xanthosine 5'-monophosphate (XMP) is the committed and rate-limiting reaction in de novo guanine nucleotide biosynthesis. Inosine 5'- monophosphate dehydrogenase (IMPDH) is the enzyme that catalyzes the oxidation of IMP to XMP with the concomitant reduction of nicotinamide adenine dinucleotide (from NAD(+) to NADH). Because of its critical role in purine biosynthesis, IMPDH is a drug design target for anticancer, antiinfective, and immunosuppressive chemotherapy. We have determined the crystal structure of IMPDH from Borrelia burgdorferi, the bacterial spirochete that causes Lyme disease, with a sulfate ion bound in the IMP phosphate binding site. This is the first structure of IMPDH in the absence of substrate or cofactor where the active-site loop (loop 6), which contains the essential catalytic residue Cys 229, is clearly defined in the electron density. We report that a seven residue region of loop 6, including Cys229, is tilted more than 6 A away from its position in substrate- or substrate analogue-bound structures of IMPDH, suggestive of a conformational change. The location of this loop between beta6 and alpha6 links IMPDH to a family of beta/alpha barrel enzymes known to utilize this loop as a functional lid during catalysis. Least-squares minimization, root-mean-square deviation analysis, and inspection of the molecular surface of the loop 6 region in the substrate-free B. burgdorferi IMPDH and XMP-bound Chinese hamster IMPDH show that loop 6 follows a similar pattern of hinged rigid-body motion and indicates that IMPDH may be using loop 6 to bind and sequester substrate and to recruit an essential catalytic residue.  相似文献   

18.
Enzymatic studies with Brevibacterium ammoniagenes ATCC 6872 demonstrated that 5-phosphoribose pyrophosphokinase and purinenucleotide pyrophosphorylase were involved in the nucleotide synthesis from purine base by ATCC 6872 and that its actual accumulation from base seemed to take place extracellularly through the action of the salvage enzymes leaked out of cells. Mn2+ deficiency and the simultaneous presence of pantothenate and thiamine, essential for efficient nucleotide accumulation, caused the extracellular leakage of the two enzymes with the simultaneous excretion of R5P. In the direct IMP fermentation with the adenine auxotroph, it was verified that hypoxanthine first produced de novo was reconverted into IMP extracellularly by the salvage enzymes as speculated previously.

A guanine-requiring mutant of Brevibacterium ammoniagenes ATCC 6872 accumulated a large amonnt of 5′-xanthosine-monophosphate (abbreviated as XMP).

The quantity of XMP accumulated by the strain was affected significantly by guanine levels in the medium. The suppression of XMP accumulation by an excessive addition of guanine compounds was recovered by the supply of casamino acids in the medium.

An enzyme in the pathway of de novo XMP synthesis, IMP dehydrogenase (IMP: NAD oxidoreductase, EC 1.2.1.14), was repressed and inhibited by guanine compounds.

The facts that an exogenous xanthine was not converted to XMP by the growing cells and that the activity of XMP-pyrophosphorylase was very low or deficient suggest that XMP accumulation by the strain would be probably due to the direct excretion of the nucleotide from the cells.  相似文献   

19.
The enzyme inosine monophosphate dehydrogenase (IMPDH) is responsible for the rate-limiting step in guanine nucleotide biosynthesis. Because it is up-regulated in rapidly proliferating cells, human type II IMPDH is actively targeted for immunosuppressive, anticancer, and antiviral chemotherapy. The enzyme employs a random-in ordered-out kinetic mechanism where substrate or cofactor can bind first but product is only released after the cofactor leaves. Due to structural and kinetic differences between mammalian and microbial enzymes, most drugs that are successful in the inhibition of mammalian IMPDH are far less effective against the microbial forms of the enzyme. It is possible that with greater knowledge of the structural mechanism of the microbial enzymes, an effective and selective inhibitor of microbial IMPDH will be developed for use as a drug against multi-drug resistant bacteria and protists. The high-resolution crystal structures of four different complexes of IMPDH from the protozoan parasite Tritrichomonas foetus have been solved: with its substrate IMP, IMP and the inhibitor mycophenolic acid (MPA), the product XMP with MPA, and XMP with the cofactor NAD(+). In addition, a potassium ion has been located at the dimer interface. A structural model for the kinetic mechanism is proposed.  相似文献   

20.
Mouse wild-type neuroblastoma cells (NB cells) were stepwise selected for 10,000-fold increased resistance to mycophenolic acid (NB-Myco cells), an inhibitor of IMP dehydrogenase (IMP:NAD+ oxidoreductase, EC 1.1.1.205). IMP dehydrogenase activity was increased 25-fold, from 3.1 to 75 nmol/min.mg of protein; and a 56.7-kDa peptide was increased in abundance 200-500-fold in NB-Myco as compared to NB cells. Purification and sequence analysis confirmed that the abundant protein was IMP dehydrogenase. The stepwise selection, increased activity and protein abundance, and unstable phenotype are indirect evidence for a process of gene amplification. Kinetic findings consistent with an Ordered Bi Bi mechanism were indicative of IMP dehydrogenase having undergone mutation. The Michaelis constants were unchanged for IMP (14 and 13 microM) and increased 4-fold for NAD from 25 to 94 microM for NB and NB-Myco cells, respectively. The Ki for mycophenolic acid was increased 2400-fold from 1.4 nM to 3.4 microM for the enzyme from NB versus NB-Myco cells, and the Ki for XMP was increased 4-fold from 78 to 336 microM. Mycophenolic acid exhibited uncompetitive inhibition with IMP, consistent with the formation of a dead end E-XMP-inhibitor complex. The cellular GTP concentration was increased 2-fold in resistant cells and, upon removal of mycophenolic acid, further increased to 4.5-fold that of NB cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号