首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The water potential at turgor loss point (Ψtlp) has been suggested as a key functional trait for determining plant drought tolerance, because of its close relationship with stomatal closure. Ψtlp may indicate drought tolerance as plants, which maintain gas exchange at lower midday water potentials as soil water availability declines also have lower Ψtlp. We evaluated 17 species from seasonally dry habitats, representing a range of life‐forms, under well‐watered and drought conditions, to determine how Ψtlp relates to stomatal sensitivity (pre‐dawn water potential at stomatal closure: Ψgs0) and drought strategy (degree of isohydry or anisohydry; ΔΨMD between well‐watered conditions and stomatal closure). Although Ψgs0 was related to Ψtlp, Ψgs0 was better related to drought strategy (ΔΨMD). Drought avoiders (isohydric) closed stomata at water potentials higher than their Ψtlp; whereas, drought tolerant (anisohydric) species maintained stomatal conductance at lower water potentials than their Ψtlp and were more dehydration tolerant. There was no significant relationship between Ψtlp and ΔΨMD. While Ψtlp has been related to biome water availability, we found that Ψtlp did not relate strongly to stomatal closure or drought strategy, for either drought avoiders or tolerators. We therefore suggest caution in using Ψtlp to predict vulnerability to drought.  相似文献   

3.
During Xenopus oogenesis, the follicle-enclosed oocyte, arrested at the diplotene stage of meiotic prophase, accumulates pre-MPF. Pre-MPF is an heterodimer formed of cyclin B2 and Cdc2 protein kinase, which is maintained inactive by inhibitory phosphorylations on Thr14 and Tyr15. When the oocyte reaches its full size, it becomes competent to respond to progesterone and to activate MPF through a positive feedback loop. In this paper, we present experimental data indicating that the molecular network involved in the autoamplification loop of MPF is progressively established during late oogenesis.  相似文献   

4.
5.
How do plants respond to nutrient shortage by biomass allocation?   总被引:11,自引:0,他引:11  
Plants constantly sense the changes in their environment; when mineral elements are scarce, they often allocate a greater proportion of their biomass to the root system. This acclimatory response is a consequence of metabolic changes in the shoot and an adjustment of carbohydrate transport to the root. It has long been known that deficiencies of essential macronutrients (nitrogen, phosphorus, potassium and magnesium) result in an accumulation of carbohydrates in leaves and roots, and modify the shoot-to-root biomass ratio. Here, we present an update on the effects of mineral deficiencies on the expression of genes involved in primary metabolism in the shoot, the evidence for increased carbohydrate concentrations and altered biomass allocation between shoot and root, and the consequences of these changes on the growth and morphology of the plant root system.  相似文献   

6.
How perennial are perennial plants?   总被引:13,自引:0,他引:13  
Johan Ehrln  Kari Lehtil 《Oikos》2002,98(2):308-322
Trade-offs involving life span are important in the molding of plant life histories. However, the empirical examination of such patterns has so far been limited by the fact that information on life span is mainly available in terms of discrete categories; annuals, semelparous perennials and iteroparous perennials. We used transition matrix models to project continuous estimates of conditional life spans from published information on size- or stage-structured demography for 71 perennial plant species. The projected life span ranged from 4.3 to 988.6 years and more than half of the species had a life span of more than 35 years. Woody plants had on average a projected life span more than four times as long as non-woody plants. Life spans were higher in forests than in open habitats and individuals of non-clonal species tended to have a longer life span than ramets of clonal species. Self-incompatible plants on average lived longer than self-compatible plants. There were no clear relations between life span and geographical region, dispersal syndrome, pollination mode, seed size or the presence of a seed bank. We conclude that accurate estimates of life span are central to understand how longevity is correlated to other traits within the group of perennial plants.  相似文献   

7.
Plant mitochondria can differ in size, shape, number and protein content across different tissue types and over development. These differences are a result of signaling and regulatory processes that ensure mitochondrial function is tuned in a cell-specific manner to support proper plant growth and development. In the last decade, the processes involved in mitochondrial biogenesis are becoming clearer, including; how dormant seeds transition from empty promitochondria to fully functional mitochondria with extensive cristae structures and various biochemical activities, the regulation of nuclear genes encoding mitochondrial proteins via regulators of the diurnal cycle in plants, the mitochondrial stress response, the targeting of proteins to mitochondria and other organelles and connections between the respiratory chain and protein import complexes. All these findings indicate that mitochondrial function is a part of an integrated cellular network, and communication between mitochondria and other cellular processes extends beyond the known exchange or transport of metabolites. Our current knowledge now needs to be used to gain more insight into the molecular components at various levels of this hierarchical and complex regulatory and communication network, so that mitochondrial function can be predicted and modified in a rational manner.  相似文献   

8.
The traditional structure to function paradigm conceives of a protein''s function as emerging from its structure. In recent years, it has been established that unstructured, intrinsically disordered regions (IDRs) in proteins are equally crucial elements for protein function, regulation and homeostasis. In this review, we provide a brief overview of how IDRs can perform similar functions to structured proteins, focusing especially on the formation of protein complexes and assemblies and the mediation of regulated conformational changes. In addition to highlighting instances of such functional equivalence, we explain how differences in the biological and physicochemical properties of IDRs allow them to expand the functional and regulatory repertoire of proteins. We also discuss studies that provide insights into how mutations within functional regions of IDRs can lead to human diseases.  相似文献   

9.
The duck-billed platypus is an extraordinary mammal. Its chromosome complement is no less extraordinary, for it includes a system in which ten sex chromosomes form an extensive meiotic chain in males. Such meiotic multiples are unprecedented in vertebrates but occur sporadically in plant and invertebrate species. In this paper, we review the evolution and formation of meiotic multiples in plants and invertebrates to try to gain insights into the origin of the platypus meiotic multiple. We describe the meiotic hurdles that translocated mammalian chromosomes face, which make longer chains disadvantageous in mammals, and we discuss how sex chromosomes and dosage compensation might have affected the evolution of sex-linked meiotic multiples. We conclude that the evolutionary conservation of the chain in monotremes, the structural properties of the translocated chromosomes and the highly accurate segregation at meiosis make the platypus system remarkably different from meiotic multiples in other species. We discuss alternative evolutionary models, which fall broadly into two categories: either the chain is the result of a sequence of translocation events from an ancestral pair of sex chromosomes (Model I) or the entire chain came into being at once by hybridization of two populations with different chromosomal rearrangements sharing monobrachial homology (Model II).  相似文献   

10.
11.
12.
《Trends in microbiology》2023,31(9):894-902
Plant microbiota can greatly impact plant growth, defense, and health in different environments. Thus, it might be evolutionarily beneficial for plants to be able to control processes related to microbiota assembly. Dioecious plant species display sexual dimorphism in morphology, physiology, and immunity. These differences imply that male and female individuals might differently regulate their microbiota, but the role of sex in microbiota assembly has been largely neglected so far. Here, we introduce the mechanism of how sex controls microbiota in plants analogically to the sex regulation of gut microbiota in animals, in particular in humans. We argue that plant sex imposes selective pressure on filtering and constructing microbiota in the rhizosphere, phyllosphere, and endosphere along the soil–plant continuum. Since male plants are more resistant than female plants to environmental stresses, we suggest that a male host forms more stable and resistant plant microbiota that cooperate more effectively with the host to resist stresses. Male and female plants can distinguish whether a plant is of the same or different sex, and males can alleviate stress-caused damage in females. The impact of a male host on microbiota would protect female plants from unfavorable environments.  相似文献   

13.
How much effort is required to isolate nuclear microsatellites from plants?   总被引:21,自引:0,他引:21  
The attributes of codominance, reproducibility and high resolution have all contributed towards the current popularity of nuclear microsatellites as genetic markers in molecular ecological studies. One of their major drawbacks, however, is the development phase required to obtain working primers for a given study species. To facilitate project planning, we have reviewed the literature to quantify the workload involved in isolating nuclear microsatellites from plants. We highlight the attrition of loci at each stage in the process, and the average effort required to obtain 10 working microsatellite primer pairs.  相似文献   

14.
Research on early-divergent angiosperms, including Amborella, the putative sister to all other extant angiosperms, is increasingly used as a yardstick to infer the nature of the hypothetical ancestral angiosperm. Some traits are relatively diverse (and hence relatively labile) in this phylogenetic grade, compared with the more derived eudicot clade, in which developmental patterns have become increasingly canalized. One of the many mysteries surrounding the origin of the angiosperms is the evolutionary origin of the Polygonum-type embryo sac (monosporic, eight-nucleate and seven-celled) that occurs in the majority of flowering plants. Observations on the megagametophyte of Amborella are conflicting, but a recent report of a supernumerary synergid in this genus raises the question of whether the Polygonum-type embryo sac is derived by duplication of a four-nucleate structure or by reduction from a multicellular structure.  相似文献   

15.
One way the public can engage in insect conservation is through wildlife gardening, including the growing of insect-friendly flowers as sources of nectar. However, plant varieties differ in the types of insects they attract. To determine which garden plants attracted which butterflies, we counted butterflies nectaring on 11 varieties of summer-flowering garden plants in a rural garden in East Sussex, UK. These plants were all from a list of 100 varieties considered attractive to British butterflies, and included the five varieties specifically listed by the UK charity Butterfly Conservation as best for summer nectar. A total of 2659 flower visits from 14 butterfly and one moth species were observed. We performed a principal components analysis which showed contrasting patterns between the species attracted to Origanum vulgare and Buddleia davidii. The “butterfly bush” Buddleia attracted many nymphalines, such as the peacock, Inachis io, but very few satyrines such as the gatekeeper, Pyronia tithonus, which mostly visited Origanum. Eupatorium cannibinum had the highest Simpson’s Diversity score of 0.75, while Buddleia and Origanum were lower, scoring 0.66 and 0.50 respectively. No one plant was good at attracting all observed butterfly species, as each attracted only a subset of the butterfly community. We conclude that to create a butterfly-friendly garden, a variety of plant species are required as nectar sources for butterflies. Furthermore, garden plant recommendations can probably benefit from being more precise as to the species of butterfly they attract.  相似文献   

16.
How do plants feel the heat?   总被引:4,自引:0,他引:4  
In plants, the heat stress response (HSR) is highly conserved and involves multiple pathways, regulatory networks and cellular compartments. At least four putative sensors have recently been proposed to trigger the HSR. They include a plasma membrane channel that initiates an inward calcium flux, a histone sensor in the nucleus, and two unfolded protein sensors in the endoplasmic reticulum and the cytosol. Each of these putative sensors is thought to activate a similar set of HSR genes leading to enhanced thermotolerance, but the relationship between the different pathways and their hierarchical order is unclear. In this review, we explore the possible involvement of different thermosensors in the plant response to warming and heat stress.  相似文献   

17.
Programmed cell death (PCD) is an integral part of plant development and defence. It occurs at all stages of the life cycle, from fertilization of the ovule to death of the whole plant. Without it, tall trees would probably not be possible and plants would more easily succumb to invading microorganisms. Here, we have attempted to categorize plant PCD in relation to three established morphological types of metazoan cell death: apoptosis, autophagy and non-lysosomal PCD. We conclude that (i) no examples of plant PCD conform to the apoptotic type, (ii) many examples of PCD during plant development agree with the autophagic type, and (iii) that other examples are apparently neither apoptotic nor autophagic.  相似文献   

18.
19.
Biodiversity is globally recognised as a cornerstone of healthy ecosystems, and biodiversity conservation is increasingly becoming one of the important aims of environmental management. Evaluating the trade-offs of alternative management strategies requires quantitative estimates of the costs and benefits of their outcomes, including the value of biodiversity lost or preserved. This paper takes a decision-analytic standpoint, and reviews and discusses the alternative aspects of biodiversity valuation by dividing them into three categories: socio-cultural, economic, and ecological indicator approaches. We discuss the interplay between these three perspectives and suggest integrating them into an ecosystem-based management (EBM) framework, which permits us to acknowledge ecological systems as a rich mixture of interactive elements along with their social and economic aspects. In this holistic framework, socio-cultural preferences can serve as a tool to identify the ecosystem services most relevant to society, whereas monetary valuation offers more globally comparative and understandable values. Biodiversity indicators provide clear quantitative measures and information about the role of biodiversity in the functioning and health of ecosystems. In the multi-objective EBM approach proposed in the paper, biodiversity indicators serve to define threshold values (i.e., the minimum level required to maintain a healthy environment). An appropriate set of decision-making criteria and the best method for conducting the decision analysis depend on the context and the management problem in question. Therefore, we propose a sequence of steps to follow when quantitatively evaluating environmental management against biodiversity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号