首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Superfused slices of drone retina were used for a quantitative analysis of light-induced changes in extracellular Ca2+ concentration ([Ca2+]o) and extracellular space (ECS) volume. 20-ms light flashes elicited biphasic changes in [Ca2+]o. For a saturating flash a brief, initial decrease was followed by a transient increase of 120±34 M. Long, dim steps of light (5 min) produced either a decrease or an increase in [Ca2+]o depending strongly on the previous illumination. Brighter continuous lights caused the [Ca2+]o to increase transiently by 1.4 mM to a peak from which it decayed to a plateau, up to 0.6 mM above the dark concentration.Light flashes (20 ms) caused a shrinkage in ECS volume not exceeding 4%. Thus, changes in [Ca2+]o were almost completely due to Ca2+ fluxes between the ECS and adjacent cells. Continuous lights caused a shrinkage in ECS volume rarely exceeding 16%–20%. Thus, less than 15% of the measured Ca2+ changes could be attributed to shrinkage of the ECS. These data confirm that the ECS functions as a source and a sink for Ca2+ mobilized by light. For comparison, we also made a few measurements of changes in [Ca2+]o in the retina ofCalliphora.Abbreviations [Ca 2+]i intracellular free Ca2+ concentration - [Ca 2+]o extracellular free Ca2+ concentration - ECS extracellular space - ER endoplasmic reticulum - TMA + tetramethylammonium ion  相似文献   

2.
Summary Ion-selective microelectrodes inserted into the compound eyes of Calliphora, Locusta and Apis were used to monitor the changes in extracellular concentration of Ca2+ (Cao) brought about by a 1-min exposure to white light (maximal luminous intensity ca. 103 cd/m2).In the blowfly retina such stimulation causes a decrease in Cao. At high light intensities the Cao signal is phasic, falling over about 6 s to a transient light-induced minimum (Cao= -6.2% ± 0.4%, n = 20, SE) and then rising to an approximately stable plateau (-3.3% ± 0.6%). In migratory locusts the light-induced minimum corresponds to a Cao of -13.8% ± 1.6% (n = 10), and at the plateau the Cao decrease is-13.2% ± 1.5%. In honey-bees Cao at first decreases only slightly, by -2.6% ± 1.0% (n = 10); by the end of the 1-min stimulus the extracellular concentration averages 33.6% ± 14.6% above the dark level.The results suggest a relationship between the position of the characteristic curve of the photoreceptor in the dark-adapted state, the occurrence of quantum bumps, and light-induced increases or decreases in Cao. Therefore the species differences might be interpreted as a consequence of differences in the intracellular dark concentration of Ca2+.Abbreviations Cai intracellular Ca2+ concentration - Cao extracellular Ca2+ concentration  相似文献   

3.
Summary Ion-selective microelectrodes inserted into the compound eyes of Calliphora were used to monitor the changes in extracellular concentration of Ca2+ and Na+ (Cao, Nao) brought about by a 1-min exposure to white light (maximal luminous intensity 0.1 cd/cm2).Using Ringer solution as the reference (Ca2+ = 1 mM), the dark concentration of the calcium in the retina was found to be (1.4 ± 0.4) mM (n=12). Stimulation with light reduces Cao. At intensities near maximal the Cao signal is phasic, reaching a transient minimum about 6 s after light onset and then rising to a nearly stable plateau below the dark level (-3.3% ± 2.6%). Cao signals measured in the white-eyed mutant (chalky), which lacks pigment granules, are comparable to those in the wild type.Conclusions: (a) There are no extracellular Ca2+ binding sites that regulate light adaptation, such as were postulated by Hochstrate and Hamdorf (1985). (b) Ca2+ influx into the photoreceptors seems to be necessary for light adaptation, (c) The pigment granules have no major function in intracellular calcium regulation.The time course of the Nao signals resembles that of the Cao signals. Because the percentage concentration change is small, light-induced extracellular Na+-depletion cannot contribute to a reduced response amplitude at light adaptation.Abbreviations Ca i intracellular Ca2+ concentration - Ca o extracellular Ca2+ concentration - Kino extracellular K+ concentration - Na o extracellular Na+ concentration  相似文献   

4.
Calcium fluxes across the envelope of intact spinach chloroplasts (Spinacia oleracea L.) in the light and in the dark were investigated using the metallochromic indicator arsenazo III. Light induces Ca2+ influx into chloroplasts. The action spectrum of light-induced Ca2+ influx and the inhibitory effect of 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU) indicate an involement of photosynthetic electron transport in this process. The driving force for light-induced Ca2+ influx is most likely a change in the membrane potential component of the proton motive force. This was demonstrated by the use of agents modifying the membrane potential (lipophilic cations, ionophores, different KCl concentrations). The activation energy of the observed Ca2+ influx is about 92 kJ mol-1. Verapamil and nifedipine, two Ca2+-channel blockers, have no inhibitory effect on light-induced Ca2+ influx, but enhance ferricyanide-dependent oxygen evolution. Inhibition of Ca2+ influx by ruthenium red reduces the light-dependent decrease in stromal NAD+ level.Abbreviations and symbols Chl chlorophyll - DCMU 3-(3',4'-dichlorophenyl)-1,1-dimethylurea - FCCP earbonyl cyanide p-trifluoromethoxyphenylhydrazone - PGA 3-phosphoglyceric acid - ABA+ tetrabutylammonium chloride - TPP+ tetraphenylphosphonium chloride - E membrane potential  相似文献   

5.
Protoplasts isolated from the apical segments of Cuscuta reflexa exhibited blue light-sensitive PM-linked NADH oxidase activity and increased rate of Ca2+-uptake in presence of NADH in dark, which was also stimulated by blue light. Contrary to marginal inhibition by Con A treatment, the ATPase inhibitors significantly inhibited the Ca2+ uptake by the protoplasts both in dark and under blue light. The Ca2+-calmodulin antagonists, W-7 and calmidazolium, also inhibited Ca2+-uptake by protoplasts under similar conditions. The state of PM polarization was monitored by the fluorescent dye 9-amino acridine. It was observed that PM-linked NADH oxidation caused hyperpolarization of the membrane, the exposure of which to blue light resulted in membrane depolarization. The presence of Ca2+-calmodulin antagonists or Con A treatment completely abolished the blue light-induced membrane depolarization. It is argued that these actities at the PM, having some glycoproteic components, are functionally closely involved in blue light-induced signal transduction in Cuscuta  相似文献   

6.
Light transiently depolarizes the membrane of growing leaf cells. The ionic basis for changes in cell membrane electrical potentials in response to light has been determined separately for growing epidermal and mesophyll cells of the argenteum mutant of pea (Pisum sativum L.). In mesophyll cells light induces a large, transient depolarization that depends on the external Cl concentration, is unaffected by changes in the external Ca2+ or K+ concentration, is stimulated by K+-channel blockers tetraethylammonium (TEA+) and Ba2+, and is inhibited by 3-(3-4-dichlorophenyl)-1,1-dimethylurea (DCMU). In isolated epidermal tissue, light induces a small, transient depolarization followed by a hyperpolarization of the membrane potential. The depolarization is enhanced by increasing the external Ca2+ concentration and by addition of Ba2+, and is not sensitive to DCMU. Epidermal cells in contact with mesophyll display a depolarization resembling the response of the underlying mesophyll cells. The light-induced depolarization in mesophyll cells seems to be mediated by an increased efflux of Cl while the membrane-potential changes in epidermal strips reflect changes in the fluxes of Ca2+ and in the activity of the proton-pumping ATPase.Abbreviations BAPTA 1,2-bis(2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid - CCCP carbonylcyanide m-chlorophenylhydrazone - DCMU 3-(3-4-dichlorophenyl)-1,1-dimethylurea - LID e light-induced depolarization in epidermal cells - LID m light-induced depolarization in mesophyll cells - LIH light-induced hyperpolarization - TEA+ tetraethylammonium Ecotrans paper #43. This research was supported by National Science Foundation grants DCB-8903744 and MCB-9220110 to E.V.  相似文献   

7.
Thylakoids and Photosystem II particles prepared from the cyanobacterium Synechococcus PCC 7942 washed with a HEPES/glycerol buffer exhibited low rates of light-induced oxygen evolution. Addition of either Ca2+ or Mg2+ to both thylakoids and Photosystem II particles increased oxygen evolution independently, maximal rates being obtained by addition of both ions. If either preparation was washed with NaCl, light induced O2 evolution was completely inhibited, but re-activated in the same manner by Ca2+ and Mg2+ but to a lower level. In the presence of Mg2+, the reactivation of O2 evolution by Ca2+ allowed sigmoid kinetics, implying co-operative binding. The results are interpreted as indicating that not only Ca2+, but also Mg2+, is essential for light-induced oxygen evolution in thylakoids and Photosystem II particles from Synechococcus PC 7942. The significance of the reactivation kinetics is discussed. Reactivation by Ca2+ was inhibited by antibodies to mammalian calmodulin, indicating that the binding site in Photosystem II may be analogous to that of this protein.Abbreviation HEPES n-2-Hydroxyethylpiperazine--2-ethane sulphonic acid  相似文献   

8.
Carol Reiss  Samuel I. Beale 《Planta》1995,196(4):635-641
Excised etiolated cucumber (Cucumis sativus L.) cotyledons that were depleted of external Ca2+ by equilibration with a Ca2+ buffer, which maintained the free Ca2+ concentration at 10–8 M, failed to accumulate chlorophyll upon a 2-h exposure to white light. Increasing amounts of chlorophyll accumulation occurred at increasing external Ca2+ concentrations within the range of 10–7-10–3 M. Preillumination with red light or pretreatment with benzyladenine, which enhanced the rate of light-induced chlorophyll accumulation in control cotyledons, did not overcome the block to light-induced chlorophyll accumulation caused by the depletion of external Ca2+. Etiolated cotyledons that were treated with the Ca2+ ionophore, A23187, and then equilibrated with 10–5 M Ca2+, accumulated significantly more chlorophyll during exposure to light than did untreated cotyledons. The enhancing effect of A23187 was approximately equal to that caused by red-light pretreatment. Etiolated cotyledons that were exposed to the Ca2+ channel-blocking agent, Nd3+ (neodymium), in the presence of 10–5 M Ca2+, did not exhibit an enhancement of chlorophyll accumulation by red-light pretreatment, although they accumulated control levels of chlorophyll upon exposure to light and showed control levels of enhancement of chlorophyll accumulation by cytokinin pretreatment. Conversely, etiolated cotyledons that were equilibrated with 10–5 M Ca2+ in the presence of nifedipine, a blocker of some Ca2+ channels, did not exhibit an enhancement of chlorophyll accumulation by cytokinin pretreatment, although they accumulated control levels of chlorophyll upon exposure to light and showed control levels of enhancement of chlorophyll accumulation by red-light pretreatment. These results indicate that external Ca2+ is required for chlorophyll accumulation by excised etiolated cucumber cotyledons during the first 2 h of light exposure, and that an influx of external Ca2+ is required for the enhancing effect of redlight and cytokinin. The differential abilities of Nd3+ and nifedipine to block the effects of red-light and cytokinin pretreatments suggests that enhancement of chlorophyll accumulation by red-light and cytokinin may involve different classes of Ca2+ channels.Abbreviations A23187 antibiotic 23187 calcium ionophore - Chl chlorophyll - nifedipine 1,4-dihydro-2,6-dimethyl-4-(2-nitrophenyl)-3,5-pyridinedicarboxylic acid dimethyl ester We thank Randy Wayne for advice and encouragement.  相似文献   

9.
Piñeros  Miguel  Tester  Mark 《Plant and Soil》1993,155(1):119-122
Single Ca2+ channel records were obtained from plasma membrane-enriched fractions of wheat roots incorporated into artificial planar lipid bilayers. The channel had a unitary conductance of 15 pS for a 10 to 95 mM CaCl2 gradient (cytoplasm: outside of the cell). The voltage dependence displayed by the channel agreed with that expected for Ca2+ channels in the plasma membrane. The channel gating was strongly modified by addition of 20 M extracellular verapamil (a Ca2+ channel antagonist). Extracellular AlCl3 (70 M, pH 4.9) almost completely blocked the channel.  相似文献   

10.
Summary The photoreceptor cells in the honeybee drone contain an elaborate Ca2+-sequestering endoplasmic reticulum (ER). We measured Ca-oxalate formation within the ER of permeabilized retinal slices with a microphotometer and studied the kinetics of Ca2+-uptake into the ER and the properties of Ins(1,4,5)P3-induced Ca2+-release.The ATP-dependent Ca2+-uptake mechanism has a high affinity for Ca2+: Uptake rate was half maximal at Ca2+ free 0.6 M.Addition of Ins(1,4,5)P3 caused a persistent depression of Ca-oxalate formation due to Ca2+ -release from the ER. The Ins(1,4,5)P3-dependent Ca2+-release mechanism has a high affinity (half maximal rate with 0.2 M Ins(1,4,5)P3) and a high specificity for Ins(1,4,5)P3: Ins(2,4,5)P3 was 6 times, Ins(1,3,4,5)P4 was 15 times less potent in inducing Ca2+-release. 3 M Ins(1,4)P2 had no detectable effect. The sensitivity for Ins(1,4,5)P3 was maximal between 280 nM and 1.6 M Ca2+ free and decreased at higher and lower Ca2+-concentrations.Our data show that the ER in invertebrate photoreceptor cells is an effective Ca2+ -sink and an Ins(1,4,5)P3-sensitive Ca2+-source. We support the idea (Payne et al. 1988) that the ER-network close to the photoreceptive membrane, the submicrovillar cisternae (SMC), are the light- and Ins(1,4,5)P3-sensitive Ca2+-stores.Abbreviations ER endoplasmic reticulum - Ins(1,4,5)P 3 D-inositol 1,4,5-trisphosphate - Ins(1,3,4)P 3 D-inositol 1,3,4-trisphosphate - Ins(2,4,5)P 3 D-inositol 2,4,5-trisphosphate - Ins(1,4)P 2 D-inositol 1,4-bisphosphate - Ins(1,3,4,5)P 4 D-inositol 1,3,4,5-tetrakisphosphate - SMC submicrovillar cisternae - [Ca 2+]i intracellular free Ca2+-concentration  相似文献   

11.
In order to test the hypothesis that excitation in Drosophila photoreceptors is mediated by Ca2+ released from internal stores, the Ca2+ buffers EGTA, BAPTA and di-bromo-BAPTA (DBB) were introduced into dissociated photoreceptors via whole-cell recording pipettes. All buffers were preloaded with Ca2+ to provide the same free Ca2+ concentration (250 nM). EGTA (up to 18 mM free buffer) had only weak effects upon voltage-clamped flash responses in normal Ringer's solution (1.5 mM Ca 0 2+ ), and no effect in Ca2+-free solution. The maximum BAPTA concentration tested (14.4 mM free BAPTA) reduced the initial rate of rise by ca. 5000-fold in normal Ringer's solution; by ca. 500-fold in Ca2+free solution; and only ca. 60-fold in the absence of Mg2+, which preferentially blocks one component of the light-sensitive current. Although BAPTA delayed the time-to-peak in normal Ringer's solution, responses in Ca2+ free Ringer's solution were accelerated. These results support the role of Ca2+ influx in regulating sensitivity and response kinetics; however, in view of the high concentrations required to attenuate responses in Ca2+ free Ringer's solution, the role of Ca2+ release in excitation remains unclear. DBB was ca. 2–3 fold more potent than BAPTA, and at concentrations > 5 mM had a qualitatively different action, greatly delaying the time-to-peak. This suggests DBB may have distinct pharmacological actions or access to compartments inaccessible to BAPTA.The only current activated by introducing 5–500 M Ca2+ (buffered with nitrilo-triacetic acid) was electrogenic Na+/Ca2+ exchange. When this was blocked by removing Nao 0 + , a novel cationic conductance was activated. However, its properties did not resemble those the light-activated conductance, and thus do not support the hypothesis that Ca2+ is sufficient for excitation.Abbreviations BAPTA bis-(o-aminophenoxy)-ethane-N,N,N-tetracetic acid - DBB Di-bromo-bapta - NTA nitrilo-triacetic acid - InsP 3 inositol 1,4,5-trisphosphate  相似文献   

12.
We have measured Cai at rest and upon light stimulation in the photoreceptors of the honeybee drone microfluorometrically with the fluorescent Ca2+ indicator dyes fura-2, fluo-3 and Ca-green 5N.In darkness, Cai was 90 nM after 5 min of dark adaptation. A saturating light step caused Cai to rise in the bulk cytoplasm to 750 nM within 1 s. Our measurements with the low affinity dye Ca-green 5N showed that bright 1-s light flashes cause a rapid increase in Cai which was graded with stimulus intensity. Ca-green 5N fluorescence reached a peak in about 200 ms, and then decayed to a slightly lower sustained plateau. The fluorescence signal peaked, when the receptor potential was repolarizing from its peak to the plateau. This observation is in agreement with the proposal that the peak-to-plateau transition of the receptor potential is caused by the rise in Cai From our Fluo-3 measurements it appears that the latency of the Ca2+ increase is by 3–4 ms longer than the latency of the receptor potential elicited by bright 100-ms light flashes. This result provides no support for the proposal that Ca2+ mediates the opening of those membrane channels responsible for the upstroke of the receptor potential.Abbreviations ER endoplasmic reticulum - IP3 Inositol 1,4,5-trisphosphate - SMC submicrovillar cisternae  相似文献   

13.
Ca2+ is proposed to function as a messenger in such phytochrome-mediated responses as localized cell growth, intracellular movements, and control of plasma membrane properties. To test this hypothesis, the uptake of Ca2+ in irradiated and non-irradiated regions of individual threads of the green alga Mougeotia was studied with the aid of 45Ca2+ and low temperature autoradiography: 10–20 cells within 40–60 cell-long threads were irradiated for up to 1 min, transferred to darkness for 3 to 10 min, submersed in a radioactive medium for 1 min, washed in an unlabelled medium for 30 min, and then autoradiographed at-80° C for several days.The autoradiographs show that those cells which had been pre-irradiated with red light did take up 2–10 times more Ca2+ than the adjacent non-irradiated cells of the same thread. Cells pre-irradiated with farred light or red light followed by far-red light showed no enhanced uptake of Ca2+. These results might be interpreted to indicate, firstly, that phytochrome-Pfr is involved in the enhanced uptake of Ca2+ and secondly, that the accumulation of radioactive Ca2+ in red light irradiated cells is an expression of an increased intracellular concentration of Ca2+. This interpretation is based on the data that (i) the dark interval between irradiation and labelling precluded the involvement of photosynthesis, (ii) the effect of red light was reversible with far-red light, and (iii) the accumulation of Ca2+ persisted during the long wash-out period. We speculate, that the red light-enhanced accumulation of Ca2+ in Mougeotia cells is caused by a Pfr-mediated increase of the Ca-permeability of the plasma membrane, and perhaps by a Pfr-impeding of an active Ca2+-extrusion.Abbreviations APW artificial pond water - EGTA ethylene glycol-bis-(-amino ethyle ether) N,N-tetraacetic acid - R red irradiation - D darkness - FR far-red irradiation - Pfr physiologicallyactive form of phytochrome - Pr physiologically inactive form of phytochrome This paper is part of a Ph. D. Thesis submitted to the University of Erlangen-Nürnberg by E.M. Dreyer  相似文献   

14.
Ca 2+ -specific removal of Z lines from rabbit skeletal muscle   总被引:15,自引:6,他引:9  
Removal of rabbit psoas strips immediately after death and incubation in a saline solution containing 1 mM Ca2+ and 5 nM Mg2+ for 9 hr at 37°C and pH 7.1 causes complete Z-line removal but has no ultrastructurally detectable effect on other parts of the myofibril. Z lines remain ultrastructurally intact if 1 mM 1,2-bis-(2-dicarboxymethylaminoethoxy)-ethane (EGTA) is substituted for 1 mM Ca2+ and the other conditions remain unchanged. Z lines are broadened and amorphous but are still present after incubation for 9 hr at 37°C if 1 mM ethylenediaminetetraacetate (EDTA) is substituted for 1 mM Ca2+ and 5 mM Mg2+ in the saline solution. A protein fraction that causes Z-line removal from myofibrils in the presence of Ca2+ at pH 7.0 can be isolated by extraction of ground muscle with 4 mM EDTA at pH 7.0–7.6 followed by isoelectric precipitation and fractionation between 0 and 40% ammonium sulfate saturation. Z-line removal by this protein fraction requires Ca2+ levels higher than 0.1 mM, but Z lines are removed without causing any other ultrastructurally detectable degradation of the myofibril. This is the first report of a protein endogenous to muscle that is able to catalyze degradation of the myofibril. The very low level of unbound Ca2+ in muscle cells in vivo may regulate activity of this protein fraction, or alternatively, this protein fraction may be localized in lysosomes.  相似文献   

15.
Extracellular recordings from the vacoule of photoreceptor cells of Hirudo medicinalis L. were performed using microelectrodes. The cells were adapted by white light flashes given at constant intervals (20 s). Response height versus relative intensity curves obtained from the same cell in physiological saline (PS) and in bathing solutions of either a) lowered calcium contents (2 ΜM/1 or less) or b) raised calcium contents (15 mM/1) were compared. The cells' adaptation state in PS was operationally defined by the ratio Q=h A /h S where h A is the response height evoked by the adapting flashes, and h S is the corresponding saturation response height. Sensitivity changes were measured by the half saturation intensity shift. Lowering extracellular calcium resulted in:
  1. The response height increased and the shape of the response became more rounded and prolonged.
  2. The total resistance between the vacuole and outside decreased from 8.2±1.4 MΩ (n=6) in PS to 4.6±0.4 MΩ (n=5). The resistance was independent of the cells' adaptation state.
  3. A change of the cells' sensitivity occured either in direction to light adaptation or in direction to dark adaptation. It depended functionally on the ratio Q:
a) if Q was less or equal to about 0.6 the cells' sensitivity increased. b) if Q was greater than 0.6 the cells' sensitivity diminished. Raising extracellular calcium decreased the sensitivity of all cells tested independent of their adaptation states in PS. The results can be interpreted under the assumptions that 1. the sensitivity of leech photoreceptor cells is inversely proportional to the intracellular free calcium concentration and Z. intracellular calcium can interact with extracellular calcium in relatively dark adapted cells whereas in relatively light adapted cells the raise of intracellular free calcium is mainly effected by a release from intracellular stores. It is assumed that a Q value of about 0.6 separates relatively light adapted cells from relatively dark adapted cells.  相似文献   

16.
We examined transepithelial transport of Ca2+ across the isolated opercular epithelium of the euryhaline killifish adapted to fresh water. The opercular epithelium, mounted in vitro with saline on the serosal side and fresh water (0.1 mmol·l–1 Ca2+) bathing the mucosal side, actively transported Ca2+ in the uptake direction; net flux averaged 20–30 nmol·cm–2·h–1. The rate of Ca2+ uptake varied linearly with the density of mitochondria-rich cells in the preparations. Ca2+ uptake was saturable, apparent K 1/2 of 0.348 mmol·l–1, indicative of a multistep transcellular pathway. Ca2+ uptake was inhibited partially by apically added 0.1 mmol·l–1 La3+ and 1.0 mmol·l–1 Mg2+. Addition of dibutyryl-cyclic adenosine monophosphate (0.5 mmol·l–1)+0.1 mmol·l–1 3-isobutyl-l-methylxanthine inhibited Ca2+ uptake by 54%, but epinephrine, clonidine and isoproterenol were without effect. Agents that increase intracellular Ca2+, thapsigargin (1.0 mol·l–1, serosal side), ionomycin (1.0 mol·l–1, serosal side) and the calmodulin blocker trifluoperazine (50 mol·l–1, mucosal side) all partially inhibited Ca2+ uptake. In contrast, apically added ionomycin increased mucosal to serosal unidirectional Ca2+ flux, indicating Ca2+ entry across the apical membrane is rate limiting in the transport. Verapamil (10–100 mol·l–1, mucosal side), a Ca2+ channel blocker, had no effect. Results are consistent with a model of Ca2+ uptake by mitochondria rich cells that involves passive Ca2+ entry across the apical membrane via verapamil-insensitive Ca2+ channels, intracellular complexing of Ca2+ by calmodulin and basolateral exit via an active transport process. Increases in intracellular Ca2+ invoke a downregulation of transcellular Ca2+ transport, implicating Ca2+ as a homeostatic mediator of its own transport.Abbreviations DASPEI 2-(4-dimethylaminostyryl)-N-ethylpyridinium iodide - db-cAMP dibutyryl-cyclic adenosine monophosphate - FW fresh water - G t transepithelial conductance - I sc short-circuit current - IBMX 3-isobutyl-1-methylxanthine - SW sea water - TFP trifluoperazine - V t transepithelial potential  相似文献   

17.
Y. Iwadate  M. Kikuyama  H. Asai 《Protoplasma》1999,206(1-3):11-19
Summary Trichocyst discharge, ciliary reversal, and cell body contraction inParamecium spp. have all been claimed to be regulated by the intracellular Ca2+ concentration ([Ca2+]i) at the cortical region of the cell. We injected caged Ca2+ intoP. caudatum cells and applied ultraviolet (UV) light to the cell for 125 ms. This did not induce trichocyst discharge but did induce both ciliary reversal and cell body contraction. A re-application of UV for 125 ms triggered trichocyst discharge. These results demonstrate that (1) trichocyst discharge and ciliary reversal and cell body contraction are controlled by [Ca2+]i and (2) the threshold of [Ca2+]i for trichocyst discharge is higher than those for the other two functions.Abbreviations DTT dithiothreitol - EGTA ethylene glycol-bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - ICL infraciliary lattice - [Ca2+]i intracellular Ca2+ concentration - NP-EG o-nitrophenyl EGTA - PMT photomultiplier tube - UV ultraviolet  相似文献   

18.
1. Cultured dorsal root ganglion neurons of rat pups were depolarized by exposure to 50 mM K+ and the rise of [Ca2+]i was measured using fura-2 as an indicator.2. Lead in the extracellular solution reduced the rise of [Ca2+]i in a concentration-dependent manner, with a threshold concentration of 0.25 M. More than 80% of the calcium entry was prevented by 5 M lead. The IC50 and the Hill coefficient were 1.3 M and 1, respectively.3. This effect was considered to be due to a reduction of VACCCs, since applications of NMDA did not result in any rise of [Ca2+]i.4. Since Pb2+ itself changes the fura-2 signal in a typical and characteristic manner, fura-2 is also an indicator for Pb2+. No changes in fura-2 signals were detected when lead (5 M) was applied for several minutes in the absence of calcium, indicating that Pb2+ did not enter the cells.5. Thus it is concluded that lead prevents calcium entry by reducing VACCCs but does not cross the cell membrane itself.  相似文献   

19.
  • 1.1. In crayfish, light stimulation of the retinular cells induces a depolarizing receptor potential.
  • 2.2. Experiments were designed to determine the role of Na+ and Ca2+ on receptor potential during dark And light states.
  • 3.3. Depolarization depends on Na+ and Ca2+ availability to the retinular cell.
  • 4.4. Repolarization velocity and response duration depend on extracellular Ca2+ availability.
  • 5.5. Light adaptation increases receptor potential dependence on calcium and sodium ions.
  • 6.6. We analyse these results with respect to other invertebrate photoreceptors.
  相似文献   

20.
Summary The cytochemical reaction for surface-bound horseradish peroxidase (HRP) on cultured HeLa cells, GH3 cells, and isolated rat liver cells was suppressed by 30 M monosialoganglioside, by 30 M trisialoganglioside, or by 5 mM CMP-neurminic acid. The reaction was also suppressed by 10 mM chitotriose or by 10 mM UDP-galactose, a galactose acceptor and donor, respectively, for galactosyltransferase. The addition of 2 mM Mn2+ to the incubation medium with HRP suppressed the reaction for surfacebound HRP, and the addition of 10–20 mM Ca2+ intensified the reaction. The addition of 2 mM Zn2+ caused less inhibition than that of 2 mM Mn2+, and the addition of 2 mM Co2+ caused either a slight inhibition, or no inhibition. These observations support the hypothesis that HRP may be bound to a glycosyltransferase at the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号