首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proton permeation of the lipid bilayer barrier has two unique features. First, permeability coefficients measured at neutral pH ranges are six to seven orders of magnitude greater than expected from knowledge of other monovalent cations. Second, proton conductance across planar lipid bilayers varies at most by a factor of 10 when pH is varied from near 1 to near 11. Two mechanisms have been proposed to account for this anomalous behavior: proton conductance related to contaminants of lipid bilayers, and proton translocation along transient hydrogen-bonded chains (tHBC) of associated water molecules in the membrane. The weight of evidence suggests that trace contaminants may contribute to proton conductance across planar lipid membranes at certain pH ranges, but cannot account for the anomalous proton flux in liposome systems.Two new results will be reported here which were designed to test the tHBC model. These include measurements of relative proton/potassium permeability in the gramicidin channel, and plots of proton flux against the magnitude of pH gradients. (1) The relative permeabilities of protons and potassium through the gramicidin channel, which contains a single strand of hydrogenbonded water molecules, were found to differ by at least four orders of magnitude when measured at neutral pH ranges. This result demonstrates that a hydrogen-bonded chain of water molecules can provide substantial discrimination between protons and other cations. It was also possible to calculate that if approximately 7% of bilayer water was present in a transient configuration similar to that of the gramicidin channel, it could account for the measured proton flux. (2) The plot of proton conductance against pH gradient across liposome membranes was superlinear, a result that is consistent with one of three alternative tHBC models for proton conductance described by Nagle elsewhere in this volume.  相似文献   

2.
It has been suggested that the polyunsaturated omega-3 fatty acid, docosahexaenoic acid (DHA), can adopt unique closely packed arrays in lipid bilayers (Glomset and Applegate. (1986) J. Lipid Res. 27, 658-680). These conformations are predicted on the basis of molecular dynamics calculations and are in contrast to the expanded conformations characteristic of omega-6 unsaturated fatty acids. It has also been suggested that close packing of omega-3 acyl chains could have a substantial affect on the physical properties of lipid bilayers (e.g. permeability). We report here some experimental tests of these predictions. Surface pressure-area experiments have been carried out on DHA and its mixtures with stearic and oleic acids. At low surface pressures DHA is more expanded than oleic acid. Extrapolation to the high surface pressures characteristic of lipid bilayers indicates that the area per molecule of DHA is only marginally less than that for oleic acid. Thus there is no compelling evidence to suggest that the average area per molecule of the omega-3 fatty acid is substantially different from the omega-6 fatty acid at high surface pressures. Experiments also show that the permeability of bilayers to glucose and the rates of dissociation of pyrenyl cholesterol from bilayers were similar for bilayers containing DHA compared to bilayers containing oleic acid or linoleic acid.  相似文献   

3.
Solid-state nuclear magnetic resonance (NMR) spectroscopy and X-ray powder diffraction were used to investigate the mechanism of trehalose (TRE) stabilization of lipid bilayers. Calorimetric investigation of dry TRE-stabilized bilayers reveals a first-order phase transition (L kappa----L lambda) at temperatures similar to the L beta'----(P beta')----L alpha transition of hydrated lipid bilayers. X-ray diffraction studies show that dry mixtures of TRE and 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) have a lamellar structure with excess crystalline TRE being present. The L kappa phase shows typical gel-phase X-ray diffraction patterns. In contrast, the L lambda-phase diffraction patterns indicate disordered hydrocarbon chains. 2H NMR of specifically 2H chain-labeled DPPC confirmed that the acyl chains are disordered in the L lambda phase over their entire lengths. 2H spectra of the choline headgroup show hindered molecular motions as compared to dry DPPC alone, and 13C spectra of the sn-2-carbonyl show rigid lattice powder patterns indicating very little motion at the headgroup and interfacial regions. Thus, the sugar interacts extensively with the hydrophilic regions of the lipid, from the choline and the phosphate moieties in the headgroup to the glycerol and carbonyls in the interfacial region. We postulate that the sugar and the lipid form an extensive hydrogen-bonded network with the sugar acting as a spacer to expand the distance between lipids in the bilayer. The fluidity of the hydrophobic region in the L lambda phase together with the bilayer stabilization at the headgroup contributes to membrane viability in anhydrobiotic organisms.  相似文献   

4.
P L Chong  S Capes  P T Wong 《Biochemistry》1989,28(21):8358-8363
The effects of hydrostatic pressure on the location of 6-propionyl-2-(dimethylamino)naphthalene (PRODAN), an environmentally sensitive fluorescent probe, in phosphatidylcholine lipid bilayers have been studied by Fourier-transform infrared spectroscopy (FT-IR) over the pressure range of 0.001-25 kbar. The results derived from the PRODAN C = O stretching band, the correlation field splitting of the methylene scissoring mode, and the methylene symmetric stretching mode as well as the absorption of the naphthalene ring show that in the sample of 4% (w/w) PRODAN in dimyristoyl-L-alpha-phosphatidylcholine (DMPC) at pH 6.8, most of the PRODAN molecules are embedded in the bilayers. In contrast, at pH 3.0, PRODAN was found to reside either on the membrane surface or dispersed in water. Compared to DMPC, egg yolk phosphatidylcholine (egg PC), which contains a substantial amount of unsaturated fatty acyl chains, is more susceptible to PRODAN permeation. The present study shows that the pressure dependence of the location of PRODAN in lipid membranes is different from that of tetracaine, a local anesthetic, in lipid bilayers. The model regarding the PRODAN location in lipid bilayers derived from the present infrared data has been compared with that obtained with previous fluorescence studies.  相似文献   

5.
The phases of simple systems involving one type of protein (lysozyme or cytochrome c) and one type of lipid (phosphatidic acid) have been characterized by X-ray crystallography, chemical analysis and spin-labeling technique as a function of temperature. They are of the lamellar type with alternative protein monolayers and lipid bilayers. According to the pH, two types of lamellar phases are obtained, one where the lipid-protein interactions are mainly hydrophobic, the other where they are electrostatic. In both cases, a phase transition occurs as temperature is lowered, between a high temperature phase, where all the lipids are in the liquid-like state, and another phase where some lipid chains are rigid. In the case of the phases with electrostatic interaction, it is shown that the onset of the order-disorder transition is shifted towards low temperature as compared with the homologous lipid-water phase and that the protein content of the phase decreases as the ratio of the liquid to rigid hydrocarbon chains decreases. This leads us to suggest that in the systems studied in this work the proteins interact only with lipid in the liquid-like state. In the case of the phases with hydrophobic interaction, it is shown that the extent of hydrophobic interaction between protein and lipid increases as the unsaturation of the hydrocarbon chains increases. The onset of the order-disorder transition shows a greater shift towards low temperature than the one observed in the case of the phase with electrostatic interaction.  相似文献   

6.
Properties of hydrated unsaturated phosphatidylcholine (PC) lipid bilayers containing 40 mol % cholesterol and of pure PC bilayers have been studied. Various methods were applied, including molecular dynamics simulations, self-consistent field calculations, and the pulsed field gradient nuclear magnetic resonance technique. Lipid bilayers were composed of 18:0/18:1(n-9)cis PC, 18:0/18:2(n-6)cis PC, 18:0/18:3(n-3)cis PC, 18:0/20:4(n-6)cis PC, and 18:0/22:6(n-3)cis PC molecules. Lateral self-diffusion coefficients of the lipids in all these bilayers, mass density distributions of atoms and atom groups with respect to the bilayer normal, the C-H and C-C bond order parameter profiles of each phospholipid hydrocarbon chain with respect to the bilayer normal were calculated. It was shown that the lateral self-diffusion coefficient of PC molecules of the lipid bilayer containing 40 mol % cholesterol is smaller than that for a corresponding pure PC bilayer; the diffusion coefficients increase with increasing the degree of unsaturation of one of the PC chains in bilayers of both types (i.e., in pure bilayers or in bilayers with cholesterol). The presence of cholesterol in a bilayer promoted the extension of saturated and polyunsaturated lipid chains. The condensing effect of cholesterol on the order parameters was more pronounced for the double C=C bonds of polyunsaturated chains than for single C-C bonds of saturated chains.  相似文献   

7.
High-pressure Fourier-transform infrared (FT-IR) spectroscopy was used to study the barotropic behavior of phosphatidylserine bilayers and their interactions with the local anesthetic tetracaine. The model membrane systems studied were multilamellar aqueous dispersions of 1,2-dimyristoyl-sn-glycero-3-phospho-L-serine (DMPS) and 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) in the absence and the presence of tetracaine at pH 5.5 and 9.5. The infrared spectra were measured at 28 degrees C in a diamond anvil cell as a function of pressure up to 25 kbar. The results show that the barotropic behavior of the negatively charged phosphatidylserine bilayers is very similar to that observed for zwitterionic phospholipids, such as phosphatidylcholine and phosphatidylethanolamine, with corresponding acyl chains. The results also indicate that the local anesthetic partitions into phosphatidylserine bilayers in an environment close to the membrane-water interface and interacts electrostatically with the lipid head group. Application of high hydrostatic pressure on the lipid-anesthetic systems results in the pressure-induced expulsion of the anesthetic from a membrane to an aqueous environment. The pressures required for expulsion of anesthetic from bilayers are much higher for the unsaturated lipid (DOPS) than for the saturated lipid (DMPS) (approximately 6 kbar vs approximately 2 kbar, respectively). Whereas incorporation of the anesthetic into DOPS bilayers does not affect significantly the structural and dynamic properties of the disordered acyl chains in the liquid-crystalline phase, it orders the DMPS acyl chains in the gel phase.  相似文献   

8.
A cooperative alignment of lipid chains in dipalmitoyl phosphatidylcholine (DPPC) bilayers was detected by using oriented multilayers containing small amounts of spin-labeled phosphatidylcholine. It is shown that a significant angle of tilt exists along the entire length of the lipid chains in DPPC. This behavior is compared with that of the more complex egg phosphatidylcholine bilayers. The lipid chains do not have the alignment of a single crystal but evidently exist in domains consisting of either clusters within a bilayer or successive layers out of register in the stacked multilayer.  相似文献   

9.
The phases of simple systems involving one type of protein (lysozyme or cytochrome c) and one type of lipid (phosphatidic acid) have been characterized by X-ray crystallography, chemical analysis and spin-labeling technique as a function of temperature. They are of the lamellar type with alternative protein monolayers and lipid bilayers. According to the pH, two types of lamellar phases are obtained, one where the lipid-protein interactions are mainly hydrophobic, the other where they are electrostatic. In both cases, a phase transition occurs as temperature is lowered, between a high temperature phase, where all the lipids are in the liquid-like state, and another phase where some lipid chains are rigid. In the case of the phases with electrostatic interaction, it is shown that the onset of the order-disorder transition is shifted towards low temperature as compared with the homologous lipid-water phase and that the protein content of the phase decreases as the ratio of the liquid to rigid hydrocarbon chains decreases. This leads us to suggest that in the systems studied in this work the proteins interact only with lipid in the liquid-like state. In the case of the phases with hydrophobic interaction, it is shown that the extent of hydrophobic interaction between protein and lipid increases as the unsaturation of the hydrocarbon chains increases. The onset of the order-disorder transition shows a greater shift towards low temperture than the one observed in the case of the phase with electrostatic interaction.  相似文献   

10.
Zhang Y  Lu W  Hong M 《Biochemistry》2010,49(45):9770-9782
Defensins are cationic and disulfide-bonded host defense proteins of many animals that target microbial cell membranes. Elucidating the three-dimensional structure, dynamics, and topology of these proteins in phospholipid bilayers is important for understanding their mechanisms of action. Using solid-state nuclear magnetic resonance spectroscopy, we have now determined the conformation, dynamics, oligomeric state, and topology of a human α-defensin, HNP-1, in DMPC/DMPG bilayers. Two-dimensional correlation spectra show that membrane-bound HNP-1 exhibits a conformation similar to that of the water-soluble state, except for the turn connecting strands β2 and β3, whose side chains exhibit immobilization and conformational perturbation upon membrane binding. At high protein/lipid ratios, rapid (1)H spin diffusion from the lipid chains to the protein was observed, indicating that HNP-1 was well inserted into the hydrocarbon core of the bilayer. Arg Cζ-lipid (31)P distances indicate that only one of the four Arg residues forms tight hydrogen-bonded guanidinium-phosphate complexes. The protein is predominantly dimerized at high protein/lipid molar ratios, as shown by (19)F spin diffusion experiments. The presence of a small fraction of monomers and the shallower insertion at lower protein concentrations suggest that HNP-1 adopts concentration-dependent oligomerization and membrane-bound structure. These data strongly support a "dimer pore" topology of HNP-1 in which the polar top of the dimer lines an aqueous pore while the hydrophobic bottom faces the lipid chains. In this structure, R25 lies closest to the membrane surface among the four Arg residues. The pore does not have a high degree of lipid disorder, in contrast to the toroidal pores formed by protegrin-1, a two-stranded β-hairpin antimicrobial peptide. These results provide the first glimpse into the membrane-bound structure and mechanism of action of human α-defensins.  相似文献   

11.
M Auger  H C Jarrell  I C Smith 《Biochemistry》1988,27(13):4660-4667
The interactions of the local anesthetic tetracaine with multilamellar dispersions of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and cholesterol have been investigated by deuterium nuclear magnetic resonance of specifically deuteriated tetracaines, DMPC and cholesterol. Experiments were performed at pH 5.5, when the anesthetic is primarily charged, and at pH 9.5, when it is primarily uncharged. The partition coefficients of the anesthetic in the membrane have been measured at both pH values for phosphatidylcholine bilayers with and without cholesterol. The higher partition coefficients obtained at pH 9.5 reflect the hydrophobic interactions between the uncharged form of the anesthetic and the hydrocarbon region of the bilayer. The lower partition coefficients for the DMPC/cholesterol system at both pH values suggest that cholesterol, which increases the order of the lipid chains, decreases the solubility of tetracaine into the bilayer. For phosphatidylcholine bilayers, it has been proposed [Boulanger, Y., Schreier, S., & Smith, I. C. P. (1981) Biochemistry 20, 6824-6830] that the charged tetracaine at low pH is located mostly at the phospholipid headgroup level while the uncharged tetracaine intercalates more deeply into the bilayer. The present study suggests that the location of tetracaine in the cholesterol-containing system is different from that in pure phosphatidylcholine bilayers: the anesthetic sits higher in the membrane. An increase in temperature results in a deeper penetration of the anesthetic into the bilayer. Moreover, the incorporation of the anesthetic into DMPC bilayers with or without cholesterol results in a reduction of the lipid order parameters both in the plateau and in the tail regions of the acyl chains, this effect being greater with the charged form of the anesthetic.  相似文献   

12.
Resorcinolic lipids, or resorcinols, are commonly found in plant membranes. They consist of a substituted benzene ring forming the hydrophilic lipid head, attached to an alkyl chain forming the hydrophobic tail. Experimental results show alternative effects of resorcinols on lipid membranes. Depending on whether they are added to lipid solutions before or after the formation of the liposomes, they either stabilize or destabilize these liposomes. Here we use atomistic molecular dynamics simulations to elucidate the molecular nature of this dual effect. Systems composed of either one of three resorcinol homologs, differing in the alkyl tail length, interacting with dimyristoylphosphatidylcholine lipid bilayers were studied. It is shown that resorcinols preincorporated into bilayers induce order within the lipid acyl chains, decrease the hydration of the lipid headgroups, and make the bilayers less permeable to water. In contrast, simulations in which the resorcinols are incorporated from the aqueous solution into a preformed phospholipid bilayer induce local disruption, leading to either transient pore formation or even complete rupture of the membrane. In line with the experimental data, our simulations thus demonstrate that resorcinols can either disturb or stabilize the membrane structure, and offer a detailed view of the underlying molecular mechanism.  相似文献   

13.
We present a theoretical model which describes both the main and the lower phase transition in phosphatidylcholine bilayers. The main transition involves a melting of the hydrocarbon chains while the lower transition is seen as a nematic to isotropic transition involving entire lipid molecules (which are rod shaped when projected onto the bilayer plane). This latter transition is consistent with experimental data which suggest the presence of long-axis rotation for temperatures below the main melting transtition. The model is extended to mixtures of phosphatidylcholines and compared with experimental data.  相似文献   

14.
Excitability phenomena in planar lipid bilayers doped with alamethicin and protamines have been first described by Mueller and Rudin (Nature 217, 713-719, 1968). These properties are reinvestigated here with virtually solvent-free bilayers made of synthetic phospholipids doped with alamethicin charged component (Glu18) and protamine or other synthetic basic polypeptides. After retrieving the narrow set of experimental requisites allowing negative resistance and action potentials to develop, the potencies of different basic polypeptides were compared. Poly-arginines were found to be by far the most efficient. We also describe a transient increase of current amplitude upon addition of calcium that may reflect a lateral phase separation and conversely a gradual decrease of negative resistance due to tetrodotoxin, a potent sodium channel blocker. Functional modulations are correlated with conformational changes assayed in circular dichroism: alamethicin ellipticity in small unilamellar vesicles is markedly reduced upon protamine addition, only if the ionic strength is in the same low range that is compatible with regenerative conductance properties. These results are discussed in the framework of current models of ion channels gating.  相似文献   

15.
The interaction of Saposin C (Sap C) with negatively charged phospholipids such as phosphatidylserine (PS) is essential for its biological function. In this study, Sap C (initially protonated in a weak acid) was inserted into multilamellar vesicles (MLVs) consisting of either 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-L-serine] (negatively charged, POPS) or 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (neutrally charged, POPC). The MLVs were then investigated using solid-state NMR spectroscopy under neutral pH (7.0) conditions. The (2)H and (31)P solid-state NMR spectroscopic data of Sap C-POPS and Sap C-POPC MLVs (prepared under the same conditions) were compared using the (2)H order parameter profiles of the POPC-d(31) or POPS-d(31) acyl chains as well as the (31)P chemical shift anisotropy width and (31)P T(1) relaxation times of the phospholipids headgroups. All those solid-state NMR spectroscopic approaches indicate that protonated Sap C disturbs the POPS bilayers and not the POPC lipid bilayers. These observations suggest for the first time that protonated Sap C inserts into PS bilayers and forms a stable complex with the lipids even after resuspension under neutral buffer conditions. Additionally, (31)P solid-state NMR spectroscopic studies of mechanically oriented phospholipids on glass plates were conducted and perturbation effect of Sap C on both POPS and POPC bilayers was compared. Unlike POPC bilayers, the data indicates that protonated Sap C (initially protonated in a weak acid) was unable to produce well-oriented POPS bilayers on glass plates at neutral pH. Conversely, unprotonated Sap C (initially dissolved in a neutral buffer) did not interact significantly with POPS phospholipids allowing them to produce well-oriented bilayers at neutral pH.  相似文献   

16.
17.
Endocytosis involves the capture of membrane from the cell surface in the form of vesicles, which become rapidly acidified to about pH 5. Here we show using atomic force microscopy (AFM) imaging that this degree of acidification triggers phase separation in lipid bilayers containing mixed acyl chains (e.g. palmitoyl/oleoyl) or complex mixtures (e.g. total brain extract) but not in bilayers containing only lipids with unsaturated chains (e.g. dioleoyl). Since mixed-chain lipids are major constituents of the outer leaflet of the plasma membrane, the type of phase separation reported here might support protein clustering and signaling during endocytosis.  相似文献   

18.
Photoactivation of rhodopsin in lipid bilayers results within milliseconds in a metarhodopsin I (MI)-metarhodopsin II (MII) equilibrium that is very sensitive to the lipid composition. It has been well established that lipid bilayers that are under negative curvature elastic stress from incorporation of lipids like phosphatidylethanolamines (PE) favor formation of MII, the rhodopsin photointermediate that is capable of activating G protein. Furthermore, formation of the MII state is favored by negatively charged lipids like phosphatidylserine and by lipids with longer hydrocarbon chains that yield bilayers with larger membrane hydrophobic thickness. Cholesterol and rhodopsin-rhodopsin interactions from crowding of rhodopsin molecules in lipid bilayers shift the MI-MII equilibrium towards MI. A variety of mechanisms seems to be responsible for the large, lipid-induced shifts between MI and MII: adjustment of the thickness of lipid bilayers to rhodopsin and adjustment of rhodopsin helicity to the thickness of bilayers, curvature elastic deformations in the lipid matrix surrounding the protein, direct interactions of PE headgroups and polyunsaturated hydrocarbon chains with rhodopsin, and direct or lipid-mediated interactions between rhodopsin molecules. This article is part of a Special Issue entitled: Membrane protein structure and function.  相似文献   

19.
Alamethicin is a 20-amino acid antibiotic peptide that forms voltage-gated ion channels in lipid bilayers. Here we report calculations of its association free energy with membranes. The calculations take into account the various free-energy terms that contribute to the transfer of the peptide from the aqueous phase into bilayers of different widths. The electrostatic and nonpolar contributions to the solvation free energy are calculated using continuum solvent models. The contributions from the lipid perturbation and membrane deformation effects and the entropy loss associated with peptide immobilization in the bilayer are estimated from a statistical thermodynamic model. The calculations were carried out using two classes of experimentally observed conformations, both of which are helical: the NMR and the x-ray crystal structures. Our calculations show that alamethicin is unlikely to partition into bilayers in any of the NMR conformations because they have uncompensated backbone hydrogen bonds and their association with the membrane involves a large electrostatic solvation free energy penalty. In contrast, the x-ray conformations provide enough backbone hydrogen bonds for the peptide to associate with bilayers. We tested numerous transmembrane and surface orientations of the peptide in bilayers, and our calculations indicate that the most favorable orientation is transmembrane, where the peptide protrudes approximately 4 A into the water-membrane interface, in very good agreement with electron paramagnetic resonance and oriented circular dichroism measurements. The calculations were carried out using two alamethicin isoforms: one with glutamine and the other with glutamate in the 18th position. The calculations indicate that the two isoforms have similar membrane orientations and that their insertion into the membrane is likely to involve a 2-A deformation of the bilayer, again, in good agreement with experimental data. The implications of the results for the biological function of alamethicin and its capacity to oligomerize and form ion channels are discussed.  相似文献   

20.
Lipid bilayers can be induced to adhere to each other by molecular mediators, and, depending on the lipid composition, such adhesion can lead to merging of the contacting monolayers in a process known as hemifusion. Such bilayer-bilayer reactions have never been systematically studied. In the course of our studies of membrane-active molecules, we encountered such reactions. We believe that they need to be understood whenever bilayer-bilayer interactions take place, such as during membrane fusion. For illustration, we discuss three examples: spontaneous adhesion between phospholipid bilayers induced by low pH, polymer-induced osmotic depletion attraction between lipid bilayers, and anionic lipid bilayers cross-bridged by multicationic peptides. Our purpose here is to describe a general method for studying such interactions. We used giant unilamellar vesicles, each of which was aspirated in a micropipette so that we could monitor the tension of the membrane and the membrane area changes during the bilayer-bilayer interaction. We devised a general method for measuring the free energy of adhesion or hemifusion. The results show that the energies of adhesion or hemifusion of lipid bilayers could vary over 2 orders of magnitude from −1 to −50 × 10−5 J/m2 in these examples alone. Our method can be used to measure the energy of transition in each step of lipid transformation during membrane fusion. This is relevant for current research on membrane fusion, which focuses on how fusion proteins induce lipid transformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号