首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unusual expansion of trinucleotide repeats has been identified as a common mechanism of hereditary neurodegenerative diseases. Although the actual mechanism of repeat expansion remains uncertain, trinucleotide repeat instability may be related to the increased stability of an alternative DNA hairpin structure formed in the repeat sequences. Here we report that a synthetic ligand naphthyridine carbamate dimer (NCD) selectively bound to and stabilized an intra-stranded hairpin structure in CGG repeat sequences. The NCD-CGG hairpin complex was a stable structure that efficiently interfered with DNA replication by Taq DNA polymerase. Considering the sequence preference of NCD, the use of NCD would be valuable to investigate the genetic instabilities of CGG/CCG repeat sequences in human genomes.  相似文献   

2.
Fragile X syndrome is caused by expansion of a d(CGG) trinucleotide repeat sequence in the 5′ untranslated region of the first exon of the FMR1 gene. Repeat expansion is thought to be instigated by formation of d(CGG)n secondary structures. Stable FMR1 d(CGG)n runs in normal individuals consist of 6–52 d(CGG) repeats that are interrupted every 9–11 triplets by a single d(AGG) trinucleotide. By contrast, individuals having fragile X syndrome premutation or full mutation present >54–200 or >200–2000 monotonous d(CGG) repeats, respectively. Here we show that the presence of interspersed d(AGG) triplets diminished in vitro formation of bimolecular tetrahelical structures of d(CGG)18 oligomers. Tetraplex structures formed by d(CGG)n oligomers containing d(AGG) interspersions had lower thermal stability. In addition, tetraplex structures of d(CGG)18 oligomers interspersed by d(AGG) triplets were unwound by human Werner syndrome DNA helicase at rates and to an extent that exceeded the unwinding of tetraplex form consisting of monotonous d(CGG)18. Diminished formation and stability of tetraplex structures of d(AGG)-containing FMR1 d(CGG)2–50 tracts might restrict their expansion in normal individuals.  相似文献   

3.
We have evaluated the structure of the CGG repeat within the FMR1 gene of an Asian population and found the most common size of the repeat to be 29 and 30 with a minor population of 36 repeats. We have isolated and sequenced DNA containing the 36 repeats and found the basis sequence to be (CGG)9AGG(CGG)9AGG(CGG)6AGG(CGG)9; with a (CGG)6)AGG insertion, designated as 9A9A6A9. Of 144 Asian chromosomes, 11 (8%) had sequences with this insertion. Six different variations of the basic sequence were observed in the population: 9A9A6A2A9, 9A9A6A11, 9A9A16, 9A9A15, 8A9A6A6A9, and 11A6A6A9. All but one of the chromosomes with the insertion had the haplotype of DXS548/ FRAXAC1: 194/D suggesting that the sequences with the 6A insertion arose from a single ancestral allele. We have not observed the insertion in the FMR1 gene of Caucasians or Native Americans. The (CGG)6AGG insertion may be unique to Asians. Received: 3 December 1996 / Revised: 14 January 1997  相似文献   

4.
5.
6.
Fragile X syndrome and other trinucleotide diseases are characterized by an elongation of a repeating DNA triplet. The ensemble-averaged lambda exonuclease digestion rate of different substrates, including one with an elongated FMR1 gene containing 120 CGG repeats, was measured using absorption and fluorescence spectroscopy. By use of magnetic tweezers sequence-dependent digestion rates and pausing was measured for individual lambda exonucleases. Within the triplet repeats a lower average and narrower distribution of rates and a higher frequency of pausing was observed.  相似文献   

7.
The fragile X syndrome is the result of amplification of a CGG trinucleotide repeat in the FMR1 gene and anticipation in this disease is caused by an intergenerational expansion of this repeat. Although regression of a CGG repeat in the premutation range is not uncommon, regression from a full premutation (>200 repeats) or premutation range (50–200 repeats) to a repeat of normal size (<50 repeats) has not yet been documented. We present here a family in which the number of repeats apparently regressed from approximately 110 in the mother to 44 in her daughter. Although the CGG repeat of the daughter is in the normal range, she is a carrier of the fragile X mutation based upon the segregation pattern of Xq27 markers flanking FMR1. It is unclear, however, whether this allele of 44 repeats will be stably transmitted, as the daughter has as yet no progeny. Nevertheless, the size range between normal alleles and premutation alleles overlap, a factor that complicates genetic counseling.  相似文献   

8.
9.
The (CGG) repeats associated with X-chromosome fragility are generally believed to form quadruplexes. This notion has persisted although it had been shown that only very short (CGG)n sequences form quadruplexes and that this quadruplex formation occurs in conditions far from physiological. We have now studied, using CD and absorption spectroscopies, quadruplex formation of (CGG)n (n = 4, 7, 8, or 16) and their analogs interrupted by (AGG) triplets under various solvent conditions. In healthy individuals, (AGG) triplets are interspersed throughout the (CGG) repeat regions and appear to hinder (CGG)n motif expansion. Here we show that (CGG) repeats do not form quadruplexes under physiological conditions in aqueous solution but, interestingly, quadruplexes are readily formed in water–ethanol solutions. The presence of (AGG) triplets markedly stabilized quadruplex formation. Quadruplexes may thus hinder rather than support (CGG)n motif expansion.  相似文献   

10.
Fragile X syndrome, the most common inherited form of mental retardation, arises in individuals with more than 200 CGG repeats in the 5 untranslated region of the fragile X mental retardation 1 (FMR1) gene. Although CGG repeat numbers comparable to those found in the normal human population are found in various non-human primates, neither the within-species size variation nor the propensity for expansion of the CGG repeat has been described for any non-human primate species. The allele distribution has now been determined for FMR1 (homologue) CGG repeats of 265 unrelated founder females of Macaca mulatta monkeys. Among 530 X chromosomes, at least 26 distinct repeat lengths were identified, ranging from 16 to 54 CGG repeats. Of these alleles 79% have between 25 and 33 CGG repeats. Detailed examination of the CGG region revealed a conserved G (CGG)2 G interruption, although in no case was an AGG trinucleotide detected. Two animals carried borderline premutation alleles with 54 CGG repeats, within the region of marginal instability for humans. Thus, M. mulatta may be useful as an animal model for the study of fragile X syndrome.  相似文献   

11.
12.
Amrane S  Mergny JL 《Biochimie》2006,88(9):1125-1134
Trinucleotide repeats are involved in a number of debilitating diseases such as fragile-X syndrome and myotonic dystrophy. Eighteen to 75 base-long (CCG)(n) and (CGG)(n) oligodeoxynucleotides were analysed using a combination of biophysical (UV-absorbance, differential scanning calorimetry) and biochemical methods (non-denaturing gel electrophoresis, enzymatic footprinting). All oligomers formed stable intramolecular structures under near physiological conditions with a melting temperature which was only weakly dependent on oligomer length. Thermodynamic analysis of the denaturation process by UV-melting and calorimetric experiments revealed a length-dependent discrepancy between the enthalpy values deduced from model-dependent (UV-melting) and model-independent experiments (calorimetry), as recently shown for CTG and CAG trinucleotides (Nucleic Acids Res. 33 (2005) 4065). Evidence for non-zero molar heat capacity changes was also derived from the analysis of the Arrhenius plots. Such behaviour is analysed in the framework of an intramolecular "branched" or "broken" hairpin model, in which long oligomers do not fold into a simple long hairpin-stem intramolecular structure, but allow the formation of several independent folding units of unequal stability. These results suggest that this observation may be extended to various trinucleotide repeats-containing sequences.  相似文献   

13.
Expansion of trimer repeats has recently been described as a new type of human mutation. Of the 64 possible trimer compositions, only the CGG and CAG repeats have been implicated in genetic diseases. This study intends to address two questions: (1) What makes the CGG and CAG repeats unique? (2) Could other trimer repeats be involved in this type of mutation? By computer analysis of trimer and hexamer frequency distributions in approximately 10 Mb of human DNA, twenty trimer motifs (ten complementary pairs) have been identified that are the most likely to be expanded. The frequency distribution study also indicated that the expanded trimer motif in Fragile-X syndrome is GGC instead of CGG. DNA linguistics studies revealed that the GGC/GCC and CAG/CTG repeats were over-represented in the human genome. Further analysis of base composition suggested that the CCA/TGG repeats may be involved in the trimer expansion mutation since they possessed many similar characteristics to GGC/GCC and CAG/CTG. The computer aided sequence analysis studies reported here may help to understand the molecular mechanisms of trimer repeat expansion.  相似文献   

14.
Expanded trinucleotide repeats underlie a growing number of human diseases. The human FMR1 (CGG)(n) array can exhibit genetic instability characterized by progressive expansion over several generations leading to gene silencing and the development of the fragile X syndrome. While expansion is dependent upon the length of uninterrupted (CGG)(n), instability occurs in a limited germ line and early developmental window, suggesting that lineage-specific expression of other factors determines the cellular environment permissive for expansion. To identify these factors, we have established normal- and premutation-length human FMR1 (CGG)(n) arrays in the yeast Saccharomyces cerevisiae and assessed the frequency of length changes greater than 5 triplets in cells deficient in various DNA repair and replication functions. In contrast to previous studies with Escherichia coli, we observed a low frequency of orientation-dependent large expansions in arrays carrying long uninterrupted (CGG)(n) arrays in a wild-type background. This frequency was unaffected by deletion of several DNA mismatch repair genes or deletion of the EXO1 and DIN7 genes and was not enhanced through meiosis in a wild-type background. Array contraction occurred in an orientation-dependent manner in most mutant backgrounds, but loss of the Sgs1p resulted in a generalized increase in array stability in both orientations. In contrast, FMR1 arrays had a 10-fold-elevated frequency of expansion in a rad27 background, providing evidence for a role in lagging-strand Okazaki fragment processing in (CGG)(n) triplet repeat expansion.  相似文献   

15.
16.
Fragile X syndrome, the most common cause of hereditary mental retardation, results from amplification of a CGG trinucleotide repeat in the FMR1 gene. The transmission of the CGG repeat from premutated individuals to their premutated descendants is usually unstable, showing an increase in the size of the repeat. We report here a family which exhibits recurrent and unexpected transmission of the maternal premutation to three daughters. The first daughter exhibited mosaicism with two premutated alleles, one contracted and the other expanded. The second daughter showed a reversion from the maternal premutation to the normal range, and the third carried an expanded premutated allele associated with an expanded paternal allele within the normal range. These variations in the size of the CGG repeat may result from many different mechanisms such as DNA polymerase slippage on the leading or lagging strand during replication, large contractions of repeats on the parental strand during replication, or recombination through unequal crossover between sister chromatids. Our results suggest that the variation of the CGG premutated alleles in this family may be the result of intrinsic instability associated with a trans-acting factor such as a mismatch repair gene product. Received: 21 August 1995 / Revised: 21 September 1995  相似文献   

17.
The fragile X mental retardation syndrome is caused by an expansion of a trinucleotide repeat (CGG)n in the FMR-1 gene. Molecular genetic study of fragile X provides accurate diagnosis and facilitates genetic counseling in families with affected members. We present here the molecular study of 59 Spanish fragile X syndrome families using probe StB 12.3 and the polymerase chain reaction (PCR) of the (CGG)n repeat sequence of the FMR-1 gene. The results obtained have allowed us to characterize 455 individuals, including eight prenatal diagnoses. The clinical diagnosis of fragile X in 89 affected males was confirmed, 137 female carriers were identified (48 of whom were mentally retarded), 176 individuals at risk were found not to have the expansion, and 12 cases of normal transmitting males (NTM) were detected. In the sample studied, no de novo mutations were detected, nor any mutation different from that described for the (CGG)n expansion. One nonmentally retarded male was detected as having an unmethylated CpG island for the FMR-1 gene, but with more than 200 CGG repeats (high functioning male). The analysis of the (CGG)n repeat in 208 normal chromosomes gave an allele distribution similar to that in other Caucasoid population groups, with alleles of 29 and 30 CGG repeats accounting for 46% of the chromosomes. The combination of Southern analysis and PCR of the (CGG)n repeat is highly efficient for diagnosis, compared with cytogenetic techniques, especially in the detection of female carriers, NTMs, and prenatal diagnosis, enabling accurate genetic counseling to be provided in all cases.  相似文献   

18.
Formations of hairpin and tetrahelical structures by the trinucleotide repeat sequence d(CGG)(n) might contribute to its expansion in fragile X syndrome. Here we show that tetraplex structures of d(CGG)(n) are destabilized by two mammalian heterogeneous nuclear ribonucleoprotein-related tetraplex telomeric DNA-binding and -stabilizing proteins, quadruplex telomeric DNA-binding protein 42 (qTBP42) (Sarig, G., Weisman-Shomer, P., Erlitzki, R., and Fry, M. (1997) J. Biol. Chem. 272, 4474-4482) and unimolecular quadruplex telomeric DNA-binding protein 25 (uqTBP25) (Erlitzki, R., and Fry, M. (1997) J. Biol. Chem. 272, 15881-15890). Blunt-ended and 3'-tailed or 3'- and 5'-tailed bimolecular tetraplex structures of d(CGG)(n) and guanine-sparse 20-/46-mer partial DNA duplex were progressively destabilized by increasing amounts of qTBP42 or uqTBP25 in time-dependent and ATP- or Mg(2+)-independent reactions. By contrast, tetraplex structures of telomeric and IgG sequences or guanine-rich double-stranded DNA resisted destabilization by qTBP42 or uqTBP25. Increased stability of tetraplex d(CGG)(n) in the presence of K(+) or Na(+) ions or at lowered reaction temperature diminished the destabilizing activity of uqTBP25. The contrasting stabilization of tetraplex telomeric DNA and destabilization of tetraplex d(CGG)(n) by qTBP42 and uqTBP25 suggested that sequence or structural differences between these tetraplexes might serve as cues for the differential stabilizing/destabilizing activities.  相似文献   

19.
DNA trinucleotide repeats, particularly CXG, are common within the human genome. However, expansion of trinucleotide repeats is associated with a number of disorders, including Huntington disease, spinobulbar muscular atrophy and spinocerebellar ataxia. In these cases, the repeat length is known to correlate with decreased age of onset and disease severity. Repeat expansion of (CAG)n, (CTG)n and (CGG)n trinucleotides may be related to the increased stability of alternative DNA hairpin structures consisting of CXG-CXG triads with X-X mismatches. Small-molecule ligands that selectively bound to CAG repeats could provide an important probe for determining repeat length and an important tool for investigating the in vivo repeat extension mechanism. Here we report that napthyridine-azaquinolone (NA, 1) is a ligand for CAG repeats and can be used as a diagnostic tool for determining repeat length. We show by NMR spectroscopy that binding of NA to CAG repeats induces the extrusion of a cytidine nucleotide from the DNA helix.  相似文献   

20.
Peier AM  Nelson DL 《Genomics》2002,80(4):423-432
Fragile X syndrome results from the massive expansion of a CGG repeat in the 5' untranslated region of the gene FMR1. Data suggest that the hyperexpansion properties of FMR1 CGG repeats may depend on flanking cis-acting elements. We have therefore used homologous recombination in yeast to introduce an in situ CGG expansion corresponding to a premutation-sized allele into a human YAC carrying the FMR1 locus. Several transgenic lines were generated that carried repeats of varying lengths and amounts of flanking sequence. Length-dependent instability in the form of small expansions and contractions was observed in both male and female transmissions over five generations. No parent-of-origin effect or somatic instability was observed. Alterations in tract length were found to occur exclusively in the 3' uninterrupted CGG tract. Large expansion events indicative of a transition from a premutation to a full mutation were not observed. Overall, our results indicate both similarities and differences between the behavior of a premutation-sized repeat in mouse and that in human.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号