首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Purified Pseudomonas cytochrome oxidase has been associated with asolectin liposomes by two different methods. Firstly, the enzyme was attached to liposomic membranes by adding it to a cholate-phospholipid dispersion and subsequently dialyzing the detergent out of suspension. In the second case the enzyme was adsorbed on the preformed liposomes when added to them after the dialysis.A stimulation of the cytochrome oxidase activity approximately twenty-fold was observed by the first method. In contrast, the activation was absent in the second type of preparation, indicating that interaction between the enzyme and phospholipids is very different in the two types of vesicles.The cholate-dialysis method for reconstitution of protein-phospholipid vesicles seems to lead to rather heterogeneous preparations. These can be further fractionated, not only according to their size but also to the protein/phospholipid ratio, by gel chromatography.  相似文献   

2.
Reconstituted cytochrome oxidase liposomes were fused with liposomes reconstituted with mitochondrial hydrophobic protein, which acts as a membrane-bound uncoupler of cytochrome oxidase. Fusion was assayed by the loss of respiratory control of cytochrome oxidase as measured by the increased rate of ascorbate oxidation induced by hydrophobic protein when both proteins shared the same vesicles. Fusion was dependent on the presence of phosphatidylserine in the liposomes Ca++ in the aqueous medium. Phosphatidylcholine-phosphatidylserine liposomes required higher concentrations of phosphatidylserine and Ca++ than did phosphatidylethanolamine-phosphatidylserine liposomes. Cytochrome oxidase vesicles containing high concentrations of phosphatidylserine showed little or no respiratory control, while those with lower concentrations showed high respiratory control; respiratory control could be induced by fusing cytochrome oxidase vesicles containing high phosphatidylserine with protein-free liposomes containing low phosphatidylserine concentration. If cytochrome oxidase vesicles and hydrophobic protein vesicles were prefused separately for 15 min, they lost the ability to fuse upon being subsequently mixed together. The reconstituted vesicles had diameters of about 200 A; fusion yielded vesicles with diameters in excess of 1000 A.  相似文献   

3.
Summary Reconstituted cytochrome oxidase liposomes were fused with liposomes reconstituted with mitochondrial hydrophobic protein, which acts as a membrane-bound uncoupler of cytochrome oxidase. Fusion was assayed by the loss of respiratory control of cytochrome oxidase as measured by the increased rate of ascorbate oxidation induced by hydrophobic protein when both proteins shared the same vesicles. Fusion was dependent on the presence of phosphatidylserine in the liposomes and Ca++ in the aqueous medium. Phosphatidylcholine-phosphatidylserine liposomes required higher concentrations of phosphatidylserine and Ca++ than did phosphatidylethanolamine-phosphatidylserine liposomes. Cytochrome oxidase vesicles containing high concentrations of phosphatidylserine showed little or no respiratory control, while those with lower concentrations showed high respiratory control; respiratory control could be induced by fusing cytochrome oxidase vesicles containing high phosphatidylserine with protein-free liposomes containing low phosphatidylserine concentration. If cytochrome oxidase vesicles and hydrophobic protein vesicles were prefused separately for 15 min, they lost the ability to fuse upon being subsequently mixed together. The reconstituted vesicles had diameters of about 200 Å; fusion yielded vesicles with diameters in excess of 1000 Å.  相似文献   

4.
Calorimetric studies of cytochrome oxidase-phospholipid interactions   总被引:1,自引:0,他引:1  
Thermotropic phase transitions in phospholipid vesicles reconstituted with mitochondrial cytochrome oxidase (EC 1.9.3.1) were studied using differential scanning calorimetry. Both dimyristoylphosphatidylcholine (DMPC) and mixtures of DMPC and cardiolipin were used at different lipid-to-protein ratios. The incorporated protein reduces the energy absorbed during phase transitions of DMPC vesicles, and causes a small decrease in the transition temperature (tm). delta H depends on the amount of protein in the vesicles. This dependence indicates that about 72 DMPC molecules are influenced per cytochrome alpha alpha 3 monomer. The transition parameters remain unaffected by changes in ionic strength or by reduction of the enzyme. Incorporation of cytochrome oxidase depleted of subunit III into DMPC liposomes resulted in a larger decrease of tm, but the amount of perturbed phospholipids remains similar to that in the case of the intact enzyme. Incorporation of cytochrome oxidase into DMPC/cardiolipin vesicles counteracts the effect of cardiolipin in decreasing the enthalpy of the DMPC transition. Thus cytochrome oxidase segregates the phospholipids by attracting cardiolipin from the bulk lipid. Cytochrome c does not significantly affect this apparent cardiolipin 'shell' around membranous cytochrome oxidase.  相似文献   

5.
Discontinuous sucrose gradient ultracentrifugation was used to separate liposomes containing Rhodobacter sphaeroides cytochrome c oxidase (pCOV) from liposomes devoid of the enzyme, and the biophysical and biochemical properties of pCOV were compared to unpurified liposomes containing cytochrome c oxidase (COV). Isolated and purified R. sphaeroides cytochrome c oxidase (COX) was reconstituted into asolectin phospholipid vesicles by cholate dialysis, and this preparation was purified further on a discontinuous sucrose gradient to isolate only those vesicles which contained the enzyme (pCOV). After centrifugation at 300,000g for 22h, 80% of the enzyme recovered was in a single band. The number of COX molecules per pCOV liposome was estimated by measuring the visible absorbance spectrum of cytochrome c oxidase (for heme aa(3)) and inorganic phosphate concentration (for phospholipid). The number of COX molecules incorporated per pCOV was estimated to be approximately one (0.72+/-0.19-1.09+/-0.28). The pCOV exhibited similar physical properties as COV; respiratory control ratios (indicators of endogenous proton permeability) and maximum enzymatic turnover number at pH 7.4 were comparable (6.0+/-1.3 and 535+/-130s(-1)). Furthermore, proton pumping activities of the pCOV were at least 70% of COV, indicating that discontinuous sucrose gradient centrifugation is a useful technique for functional experiments in R. sphaeroides cytochrome c oxidase. Our results suggest that the monomeric form of R. sphaeroides COX when reconstituted into a phospholipid bilayer is completely functionally active in its ability to perform electron transfer and proton pumping activities of the enzyme.  相似文献   

6.
1. Cytochrome oxidase was incorporated into preformed liposomes containing phosphatidylserine. When confronted with a mixture of liposomes, some containing phosphatidylserine and some without it, the enzyme was incorporated only into the phosphatidylserine-containing liposomes. 2. The hydrophobic proteins of the oligomycin-sensitive ATPase incubated in the presence of a mixture of liposomes with and without cytochrome oxidase were preferentially incorporated into cytochrome oxidase-containing liposomes. This selectivity was abolished by either cytochrome c or ascorbate. 3. Cytochrome oxidase incubated in the presence of a mixture of liposomes with and without the hydrophobic proteins of the ATPase was preferentially incorporated into liposomes that did not contain the hydrophobic proteins. 4. Cytochrome oxidase and the oligomycin-sensitive ATPase were preferentially incorporated into pure liposomes over bacteriorhodopsin-containing vesicles. 5. Reduced coenzyme Q (QH2)-cytochrome c reductase was incorporated randomly when incubated in the presence of a mixture of pure liposomes and liposomes containing the hydrophobic proteins of the ATPase complex. 6. The significance of the incorporation procedure as a model for membrane biogenesis is discussed.  相似文献   

7.
S Kawato  A Ikegami  S Yoshida  Y Orii 《Biochemistry》1980,19(8):1598-1603
A protein-bound label, N-(1-anilinonaphthyl-4)-maleimide (ANM), was used to investigate conformational changes in bovine heart cytochrome oxidase. The fluidity of cytochrome oxidase vesicles was monitored by a lipophilic probe, 1,6-diphenyl-1,3,5-hexatriene. The fluroescence intensity and emission anisotropy of these probes were examined between 4 and 60 degrees C in enzyme--dipalmitoyllecithin vesicles, in enzyme--dimyristoyllecithin vesicles, in enzyme--dioleoyllecithin vesicles, and in the soluble enzyme. The temperature-dependent changes in these quantities indicated that there were two types of conformational changes in oxidized cytochrome oxidase: one was attributed to an intrinsic enzyme conformation change which occurred around 20 degrees C, and the other was attributed to a conformational change induced by the lipid phase transition. Although ANM-reactive subunits of cytochrome oxidase in these four lecithin vesicle and solubilized systems were different from each other, subunit I always reacted with ANM in preference to other subunits.  相似文献   

8.
Cytochrome oxidase vesicles with high oxidase activity and respiratory control ratio (greater than 3.5) were characterized by the freeze-etch technique for electron microscopy. By the use of this technique, cytochrome oxidase is shown to be an inner membrane particle. By locating cross-fractured vesicles in the same preparation, cytochrome oxidase particles are shown to extend across the phospholipid bilayer membranes. When cytochrome oxidase is added to preformed liposomes respiratory control is not observed, but high oxidase activity is maintained. In this preparation the cytochrome oxidase particles are located on the outer vesicle membrane surface. These observations provide direct evidence that cytochrome oxidase is found in a transmembranous position in closed, activecytochrome oxidase vesicles having respiratory control.  相似文献   

9.
Both beef heart cytochrome oxidase and bacteriorhodopsin of Halobacterium halobium were reconstituted into liposomes by the sonication-cholate dialysis method. The proteoliposomes showed the respiratory control ratio of 4.2, and steady-state illumination of the vesicles lead to the 2.7-fold stimulation of the oxidase activity in the absence of uncouplers. The light-stimulated state 4 respiration increased with light intensity, but light had no effect on the oxidase activity that had been relieved by addition of uncouplers. Proteoliposomes with the photosensitive oxidase activity were also obtained when cytochrome oxidase vesicles were fused with bacteriorhodopsin vesicles in the presence of calcium chloride, and the extent of photoactivation was maximally 1.4-fold. The light-induced respiratory release was observed even in the presence of valinomycin or nigericin, indicating that the oxidase activity was sensitive to both the membrane potential and the pH gradient. We propose as a mechanism of the respiratory control that the process of proton transport to the reaction center for water formation is the rate limiting step for the cytochrome oxidase activity.  相似文献   

10.
We report investigations into the direction of orientation of cytochrome c oxidase in reconstituted vesicles and the factors determining this. Measurement of the enzyme orientation employed two independent techniques: monitoring of the level of haem reduction by membrane-permeant and membrane-impermeant reagents and a kinetic analysis of the reduction of a spin label covalently bound to the oxidase surface. The method of preparation of the oxidase vesicles had a pronounced effect on the enzyme orientation and the two measurement techniques agreed in indicating that the proportion of mitochondrially oriented enzyme was approximately 85% and 50% for vesicles prepared by cholate dialysis and sonication respectively. Our results show that the membrane orientation of the oxidase is determined by interactions between the phospholipid bilayer and the portion of the enzyme embedded therein, as opposed to gross physical constraints. In particular, we demonstrate that the orientation of the oxidase is affected by the fluidity and surface charge of the membrane.  相似文献   

11.
The ionic-strength-dependences of the rate constants (log k plotted versus square root of 1) for oxidation of native and pyridoxal 5'-phosphate-modified cytochromes c by three different preparations of cytochrome c oxidase have complex non-linear character, which may be explained on the basis of present knowledge of the structure of the oxidase and the monomer-dimer equilibrium of the enzyme. The wave-type curve (with a minimum and a maximum) for oxidation of native cytochrome c by purified cytochrome c oxidase depleted of phospholipids may reflect consecutively inhibition of oxidase monomers (initial descending part), competition between this inhibition and dimer formation, resulting in increased activity (second part with positive slope), and finally inhibition of oxidase dimers (last descending part of the curve). The dependence of oxidation of native cytochrome c by cytochrome c oxidase reconstituted into phospholipid vesicles is a curve with a maximum, without the initial descending part described above. This may reflect the lack of pure monomers in the vesicles, where equilibrium is shifted to dimers even at low ionic strength. Subunit-III-depleted cytochrome c oxidase does not exhibit the maximum seen with the other two enzyme preparations. This may mean that removal of subunit III hinders dimer formation. The charge interactions of each of the cytochromes c (native or modified) with the three cytochrome c oxidase preparations are similar, as judged by the similar slopes of the linear dependences at I values above the optimal one. This shows that subunit III and the phospholipid membrane do not seem to be involved in the specific charge interaction of cytochrome c oxidase with cytochrome c.  相似文献   

12.
When the carbon monoxide complex of fully reduced cytochrome c oxidase, reconstituted into liposomes, is mixed with oxygen-containing buffer, complex kinetic progress curves are observed. This pattern is seen irrespective of whether the oxidase used in reconstitution is the dimeric or monomeric (subunit III-depleted) enzyme. These findings are interpreted in the light of similar experiments on the detergent-solubilized enzyme reported by Gibson and Greenwood (Gibson, Q.H., and Greenwood, C. (1963) Biochem. J. 86, 541-554) and confirmed by ourselves. We conclude that reconstitution of monomeric (subunit III-less) enzyme yields, preferentially, vesicles containing more than one functional unit, possibly associated as dimers. This result is of significance to our understanding of the relationships between aggregation state and proton pumping capacity of cytochrome oxidase.  相似文献   

13.
《BBA》1972,275(3):485-490
Formation of a membrane potential in two types of liposomes, one inlayed with cytochrome c + cytochrome oxidase, and another, with oligomycin-sensitive ATPase, has been demonstrated. To detect a membrane potential, phenyl dicarbaundecaborane (PCB), a penetrating anion probe, was used.

The first type of liposome was reconstituted from a solution of purified cytochrome oxidase, mitochondrial phospholipids and cytochrome c, the latter being enclosed inside liposomes. Cytochrome c bound to the outer surface of the liposome membrane was removed by washing with NaCl. Such liposomes catalyzed oxidation of ascorbate by oxygen in the presence of phenazine methosulfate or N,N,N′,N′-tetramethyl-p-phenylenediamine. The oxidation was found to support the PCB uptake by liposomes. The PCB response was prevented and reversed by cyanide, protonophorous uncouplers and external cytochrome c.

Liposomes of the second type were prepared from a solution of mitochondrial phospholipids, coupling factors F1and Fc, and the hydrophobic proteins of the oligomycin-sensitive ATPase. These liposomes catalyzed ATP hydrolysis coupled with the PCB uptake. The latter effect was prevented and reversed by oligomycin and uncouplers.

The conclusion is made that membrane potential can be independently formed by enzymic reactions of two different kinds: (1) redox (e.g. cytochrome c oxidase) and (2) hydrolytic (ATPase).  相似文献   


14.
The transverse distribution of phospholipids and their interactions with marker enzymes were investigated in pig heart mitoplasts and inverted vesicles, using phospholipase A2 from N. naja venom and chemical labeling with TNBS and FDNB. Morphological integrity was checked by freeze-fracturing. Fifty percent of phosphatidylcholine was hydrolyzed in mitoplasts as well as in inverted vesicles, suggesting an even distribution of this phospholipid on the two halves of the inner membrane; however, the fatty acid distribution did not appear the same in the two membrane fractions. Cardiolipin is exclusively hydrolyzed in inverted vesicles proving its location on the inner face of the inner membrane. The results obtained from phospholipase hydrolysis and TNBS labeling suggest that three different pools of phosphatidylethanolamine occur in the membrane: a first pool—about 50–60% of the total membrane phosphatidylethanolamine–is quickly accessible from the two sides of the membrane, a second pool—about 20–30% is slowly available, and finally 20–30% are buried within the membrane and inaccessible to the phospholipase and the probe. The cytochrome c oxidase activity increased in mitoplasts with the phospholipase attack suggesting a better accessibility of added cytochrome c after the attack. The rotenone-sensitive NADH-cytochrome c reductase was activated in mitoplasts but completely inactivated in inverted vesicles by the attack; the addition of cardiolipin liposomes restored the latter activity. The soluble matricial malate dehydrogenase was released, but the particulate form of this enzyme, strongly associated to the membrane, was detached only after attack of inverted vesicles.  相似文献   

15.
Both oleic acid and oleate hydroperoxide at concentrations below 200 nmol/mg asolectin remarkably depressed the proton pumping of cytochrome c oxidase reconstituted into liposomes but did not affect the respiratory control ratio. The inhibitory effect was comparable to that of N,N'-dicyclohexylcarbodiimide. Oleate hydroperoxide in the vesicles was reduced by ferrocytochrome c in the absence of cytochrome oxidase and converted to the hydroxy fatty acid. This non-enzymatic oxidation of ferrocytochrome c affected slightly the proton pumping and the cytochrome c oxidation by liposomal cytochrome oxidase. A physiological role of ferrocytochrome c in catabolism of the hydroperoxide of fatty acids is thus suggested.  相似文献   

16.
The electron-transfer and proton-translocation activities of cytochrome c oxidase deficient in subunit III (Mr 29 884) prepared by native gel electrophoresis [Ludwig, B., Downer, N. W., & Capaldi, R. A. (1979) Biochemistry 18, 1401-1407] have been investigated. This preparation has been depleted of 82-87% of its subunit III content as quantitated by Coomassie Brilliant Blue staining intensity on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and [14C]dicyclohexylcarbodiimide labeling. The maximum rate of electron transfer of the subunit III deficient enzyme at pH 6.5 is 383 s-1, 78% of control enzyme. Neither the high-affinity site (Km = 10(-8) M) nor the low-affinity site (Km = 10(-6) M) of the cytochrome c kinetic interaction with cytochrome c oxidase is affected by the removal of subunit III. Subunit III deficient cytochrome c oxidase retains the ability to bind cytochrome c in both the high- and low-affinity sites as determined in direct thermodynamic binding experiments. Liposomes containing this preparation exhibit a respiratory control ratio [Hinkle, P. C., Kim, J. J., & Racker, E. (1972) J. Biol. Chem. 247, 1338-1341] of 3.9, while liposomes containing control enzyme exhibit a ratio of 4.3, suggesting that they have a similar proton permeability. Vectorial proton translocation initiated by the addition of ferrocytochrome c in liposomes containing subunit III deficient enzyme is decreased by 64% compared to those containing control enzyme. When the proton-translocated to electron-transferred ratio is measured in these phospholipid vesicles at constant enzyme turnover, removal of subunit III from the enzyme decreases the ratio from 0.52 to 0.21, a 60% decrease.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Cytochrome c oxidase from Bacillus subtilis was reconstituted in liposomes and its energy-transducing properties were studied. The reconstitution procedure used included Ca2+-induced fusion of pre-formed membranes. The orientation of the enzyme in liposomes is influenced by the phospholipid composition of the membrane. Negatively charged phospholipids are essential for high oxidase activity and respiratory control. Analyses of the proteoliposomes by gel filtration, density gradient centrifugation and electron microscopy indicated a heterogeneity of the proteoliposomes with respect to size and respiratory control. Cytochrome c oxidase activity in the proteoliposomes resulted in the generation of a proton motive force, internally negative and alkaline. In the presence of the electron donor, ascorbate/N,N,N',N'-tetramethyl-p-phenylenediamine/cytochrome c or ascorbate/phenazine methosulphate, the reconstituted enzyme generated an electrical potential of 84 mV which was increased by the addition of nigericin to 95 mV and a pH gradient of 32 mV which was increased by the addition of valinomycin to 39 mV. Similar results were obtained with beef-heart cytochrome c oxidase reconstituted in liposomes. The maximal proton motive force which could be generated, assuming no endogenous ion leakage, varied over 110-140 mV. From this the efficiency of energy transduction by cytochrome c oxidase was calculated to be 18-23%, indicating that the oxidase is an efficient proton-motive-force-generating system.  相似文献   

18.
Liposomes containing bovine heart cytochrome c oxidase (COV) prepared by the cholate dialysis technique were purified from those devoid of the enzyme using discontinuous sucrose density ultra centrifugation to eliminate interference in proton-pumping assays. This technique was also used to purify liposomes containing cytochrome c oxidase depleted in subunit III (COV-III), a COX enzyme preparation with altered subunit structure, to assess if the technique could be applied to COX enzymes in which structural and functional changes have occurred. Upon discontinuous sucrose density ultra gradient ultracentrifugation, either COV or COV-III were separated into two bands. Liposomes devoid of enzyme sedimented into the 12% sucrose layer, whereas enzyme-containing liposomes (pCOV or pCOV-III) were found in the 13% sucrose layer. The yield of both pCOV or pCOV-III was greater than 60% (based on heme aa(3) content), suggesting a similar distribution of cytochrome c oxidase (COX) and subunit III-depleted enzyme (COX-III) in the purified liposomes. The number of COX or COX-III molecules per phospholipid vesicle in purified fractions was estimated to be two. Removal of subunit III (M(r)=29,918) from COX resulted in a 30% decrease in electron transfer activity (either in COV-III or pCOV-III) when compared with COV and pCOV, respectively. Both pCOV and pCOV-III exhibited low endogenous proton permeability, as assessed by possessing high respiratory control ratios (14 and greater) and by having similar valinomycin concentration dependencies for stimulation of electron transfer activity in the presence of saturating amounts of CCCP. COV-III and pCOV-III exhibited a 39-44% decrease in proton-pumping activity when compared with COV and pCOV. These results showed that the separation of COX containing liposomes from those lacking enzyme by sucrose density gradient centrifugation can be used to characterize the biophysical properties of these liposomes.  相似文献   

19.
A method for the rapid incorporation of cytochrome c oxidase into membranes has been developed. This method essentially consists of obtaining a preparation of the enzyme in which it is isolated and then dissolving it in a medium containing 0.5% of the detergent Tween 20, which gives a final concentration of 0.0125% after reconstitution. These studies revealed an optimal ratio of 1 microgram of enzyme to 5 mg of phospholipids. A similar optimal ratio was found when the amount of protein was varied. The optimum temperature was found to be 30 degrees C. Without a peak value being reached, it was found that the best reconstitution was obtained at pH 7.0-8.0. When measurements were performed either with a fluorescent cyanine (DiSC3) or by the uptake of tetraphenylphosphonium, it was found that the enzyme, with cytochrome c added to the outside, was capable of generating a membrane potential that was negative inside. Using the same procedure, the enzyme could also be reconstituted into vesicles of yeast plasma membrane. The procedure, then, seems adequate for incorporating cytochrome c oxidase into different kinds of membrane vesicles.  相似文献   

20.
Reconstituted cytochrome oxidase systems in which the majority of the vesicles contain a single oxidase dimer can be prepared. It is shown that, when these are passed through a cytochrome c affinity column, only those vesicles oriented outwards (such that the active site is available to external cytochrome c) are bound to the support matrix. Protein-free vesicles and vesicles containing an inwardly oriented enzyme are eluted in the void volume. Subsequently, vesicles containing an outwardly oriented enzyme can be eluted from the column at high salt concentrations. This protocol has been used successfully to resolve vesicles of either oxidase orientation when the enzyme is reconstituted with a variety of lipid mixtures. The recovery of oxidase activity from the column ranged between 75 and 94%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号