首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Type II restriction endonucleases (REases) are deoxyribonucleases that cleave DNA sequences with remarkable specificity. Type II REases are highly divergent in sequence as well as in topology, i.e. the connectivity of secondary structure elements. A widely held assumption is that a structural core of five beta-strands flanked by two alpha-helices is common to these enzymes. We introduce a systematic procedure to enumerate secondary structure elements in an unambiguous and reproducible way, and use it to analyze the currently available X-ray structures of Type II REases. Based on this analysis, we propose an alternative definition of the core, which we term the alphabetaalpha-core. The alphabetaalpha-core includes the most frequently observed secondary structure elements and is not a sandwich, as it consists of a five-strand beta-sheet and two alpha-helices on the same face of the beta-sheet. We use the alphabetaalpha-core connectivity as a basis for grouping the Type II REases into distinct structural classes. In these new structural classes, the connectivity correlates with the angles between the secondary structure elements and with the cleavage patterns of the REases. We show that there exists a substructure of the alphabetaalpha-core, namely a common conserved core, ccc, defined here as one alpha-helix and four beta-strands common to all Type II REase of known structure.  相似文献   

3.
《Biophysical journal》2021,120(22):4992-5004
Albino3 (Alb3) is an integral membrane protein fundamental to the targeting and insertion of light-harvesting complex (LHC) proteins into the thylakoid membrane. Alb3 contains a stroma-exposed C-terminus (Alb3-Cterm) that is responsible for binding the LHC-loaded transit complex before LHC membrane insertion. Alb3-Cterm has been reported to be intrinsically disordered, but precise mechanistic details underlying how it recognizes and binds to the transit complex are lacking, and the functional roles of its four different motifs have been debated. Using a novel combination of experimental and computational techniques such as single-molecule fluorescence resonance energy transfer, circular dichroism with deconvolution analysis, site-directed mutagenesis, trypsin digestion assays, and all-atom molecular dynamics simulations in conjunction with enhanced sampling techniques, we show that Alb3-Cterm contains transient secondary structure in motifs I and II. The excellent agreement between the experimental and computational data provides a quantitatively consistent picture and allows us to identify a heterogeneous structural ensemble that highlights the local and transient nature of the secondary structure. This structural ensemble was used to predict both the inter-residue distance distributions of single molecules and the apparent unfolding free energy of the transient secondary structure, which were both in excellent agreement with those determined experimentally. We hypothesize that this transient local secondary structure may play an important role in the recognition of Alb3-Cterm for the LHC-loaded transit complex, and these results should provide a framework to better understand protein targeting by the Alb3-Oxa1-YidC family of insertases.  相似文献   

4.
MOTIVATION: In our previous approach, we proposed a hybrid method for protein secondary structure prediction called HYPROSP, which combined our proposed knowledge-based prediction algorithm PROSP and PSIPRED. The knowledge base constructed for PROSP contains small peptides together with their secondary structural information. The hybrid strategy of HYPROSP uses a global quantitative measure, match rate, to determine whether PROSP or PSIPRED is to be used for the prediction of a target protein. HYPROSP made slight improvement of Q(3) over PSIPRED because PROSP predicted well for proteins with match rate >80%. As the portion of proteins with match rate >80% is quite small and as the performance of PSIPRED also improves, the advantage of HYPROSP is diluted. To overcome this limitation and further improve the hybrid prediction method, we present in this paper a new hybrid strategy HYPROSP II that is based on a new quantitative measure called local match rate. RESULTS: Local match rate indicates the amount of structural information that each amino acid can extract from the knowledge base. With the local match rate, we are able to define a confidence level of the PROSP prediction results for each amino acid. Our new hybrid approach, HYPROSP II, is proposed as follows: for each amino acid in a target protein, we combine the prediction results of PROSP and PSIPRED using a hybrid function defined on their respective confidence levels. Two datasets in nrDSSP and EVA are used to perform a 10-fold cross validation. The average Q(3) of HYPROSP II is 81.8% and 80.7% on nrDSSP and EVA datasets, respectively, which is 2.0% and 1.1% better than that of PSIPRED. For local structures with match rate >80%, the average Q(3) improvement is 4.4% on the nrDSSP dataset. The use of local match rate improves the accuracy better than global match rate. There has been a long history of attempts to improve secondary structure prediction. We believe that HYPROSP II has greatly utilized the power of peptide knowledge base and raised the prediction accuracy to a new high. The method we developed in this paper could have a profound effect on the general use of knowledge base techniques for various predictionalgorithms. AVAILABILITY: The Linux executable file of HYPROSP II, as well as both nrDSSP and EVA datasets can be downloaded from http://bioinformatics.iis.sinica.edu.tw/HYPROSPII/.  相似文献   

5.
The hepatitis C virus (HCV) 5'-untranslated region and, in particular, domains II to IV are involved in the internal ribosome entry site (IRES) structure. Recent structural evidence has shown that the function of domain II may be to hold the coding RNA in position until the translational machinery is correctly assembled on the decoding site. However, a comprehensive mutational and functional study concerning the importance of the different RNA regions that compose domain II is not yet available. Therefore, we have taken advantage of the recently proposed secondary structure of domain II to design a series of specific mutants. The bulge regions present in the latest secondary structure prediction of domain II were selectively deleted, and the effects of these mutations on IRES translation efficiency were analyzed. Our results show that the introduction of these mutations can variably affect the degree of HCV translation, causing a moderate to total loss of translation ability that correlates with the severity of changes induced in the RNA secondary structure and degree of p25 ribosomal protein UV cross-linking, but not with the ability of the 40S ribosomal subunit to bind the IRES. These findings support the proposed structural role of domain II in HCV translation.  相似文献   

6.
N Sreerama  R W Woody 《Proteins》1999,36(4):400-406
A significant fraction of the so-called "random coil" residues in globular proteins exists in the left-handed poly(Pro)II conformation. In order to compare the behavior of this secondary structure with that of the other regular secondary structures, molecular dynamics simulations, with the GROMOS suite of programs, of an alanine octapeptide in water, in alpha-helix, beta-strand, and left-handed poly(Pro)II conformations, have been performed. Our results indicate a limited flexibility for the alpha-helix conformation and a relatively larger flexibility for the beta-strand and poly(Pro)II conformations. The behavior of oligopeptides with a starting configuration of beta-strand and poly(Pro)II conformations, both lacking interchain hydrogen bonds, were similar. The (phi, psi) angles reflect a continuum of structures including both beta and P(II) conformations, but with a preference for local P(II) regions. Differences in the network of water molecules involved in hydrogen bonding with the backbone of the polypeptide were observed in local regions of beta and P(II) conformations. Such water bridges help stabilize the P(II) conformation relative to the beta conformation. Proteins 1999;36:400-406.  相似文献   

7.
MOTIVATION: While protein secondary structure is well understood, representing the repetitive nature of tertiary packing in proteins remains difficult. We have developed a construct called the relative packing group (RPG) that applies the clique concept from graph theory as a natural basis for defining the packing motifs in proteins. An RPG is defined as a clique of residues, where every member contacts all others as determined by the Delaunay tessellation. Geometrically similar RPGs define a regular element of tertiary structure or tertiary motif (TerMo). This intuitive construct provides a simple approach to characterize general repetitive elements of tertiary structure. RESULTS: A dataset of over 4 million tetrahedral RPGs was clustered using different criteria to characterize the various aspects of regular tertiary structure in TerMos. Grouping this data within the SCOP classification levels of Family, Superfamily, Fold, Class and PDB showed that similar packing is shared across different folds. Classification of RPGs based on residue sequence locality reveals topological preferences according to protein sizes and secondary structure. We find that larger proteins favor RPGs with three local residues packed against a non-local residue. Classifying by secondary structure, helices prefer mostly local residues, sheets favor at least two local residues, while turns and coil populate with more local residues. To depict these TerMos, we have developed 2 complementary and intuitive representations: (i) Dirichlet process mixture density estimation of the torsion angle distributions and (ii) kernel density estimation of the Cartesian coordinate distribution. The TerMo library and representations software are available upon request.  相似文献   

8.
Jha AK  Colubri A  Zaman MH  Koide S  Sosnick TR  Freed KF 《Biochemistry》2005,44(28):9691-9702
A central issue in protein folding is the degree to which each residue's backbone conformational preferences stabilize the native state. We have studied the conformational preferences of each amino acid when the amino acid is not constrained to be in a regular secondary structure. In this large but highly restricted coil library, the backbone preferentially adopts dihedral angles consistent with the polyproline II conformation rather than alpha or beta conformations. The preference for the polyproline II conformation is independent of the degree of solvation. In conjunction with a new masking procedure, the frequencies in our coil library accurately recapitulate both helix and sheet frequencies for the amino acids in structured regions, as well as polyproline II propensities. Therefore, structural propensities for alpha-helices and beta-sheets and for polyproline II conformations in unfolded peptides can be rationalized solely by local effects. In addition, these propensities are often strongly affected by both the chemical nature and the conformation of neighboring residues, contrary to the Flory isolated residue hypothesis.  相似文献   

9.
10.
We have previously shown that a distal GU-rich downstream element of the mouse IgM secretory poly(A) site is important for polyadenylation in vivo and for polyadenylation specific complex formation in vitro. This element can be predicted to form a stem-loop structure with two asymmetric internal loops. As stem-loop structures commonly define protein RNA binding sites, we have probed the biological activity of the secondary structure of this element. We show that mutations affecting the stem of the structure abolish the biological activity of this element in vivo and in vitro at the level of cleavage and polyadenylation specificity factor/cleavage stimulation factor complex formation and that both internal loops contribute to the enhancing effect of the sequence in vivo. Lead (II) cleavage patterns and RNase H probing of the sequence element in vitro are consistent with the predicted secondary structure. Furthermore, mobility on native PAGE suggests a bent structure. We propose that the secondary structure of this downstream element optimizes its interaction with components of the polyadenylation complex.  相似文献   

11.
We present a new method for predicting the secondary structure of globular proteins based on non-linear neural network models. Network models learn from existing protein structures how to predict the secondary structure of local sequences of amino acids. The average success rate of our method on a testing set of proteins non-homologous with the corresponding training set was 64.3% on three types of secondary structure (alpha-helix, beta-sheet, and coil), with correlation coefficients of C alpha = 0.41, C beta = 0.31 and Ccoil = 0.41. These quality indices are all higher than those of previous methods. The prediction accuracy for the first 25 residues of the N-terminal sequence was significantly better. We conclude from computational experiments on real and artificial structures that no method based solely on local information in the protein sequence is likely to produce significantly better results for non-homologous proteins. The performance of our method of homologous proteins is much better than for non-homologous proteins, but is not as good as simply assuming that homologous sequences have identical structures.  相似文献   

12.
The stability of potential RNA stem-loop structures in human immunodeficiency virus isolates, HTLV-III and ARV, has been calculated, and the relevance to the local significant secondary structures in the sequence has been tested statistically using a Monte Carlo simulation method. Potentially significant structures exist in the 5'non-coding region, the boundary regions between the protein coding frames, and the 3' non-coding region. The locally optimal secondary structure occurring in the 5' terminal region has been assessed using different overlapping segment sizes and the Monte Carlo method. The results show that the most favorable structure for the 5' mRNA leader sequence of HIV has two stem-loops folded at nucleotides 5-104 in the R region (stem-loop I, 5-54 and stem-loop II, 58-104). A large fluctuation of segment score of the local optimal secondary structure also occurs in the boundary between the exterior glycosylated protein or outer membrane protein and transmembrane protein coding region. This finding is surprising since no RNA signals or RNA processing are expected to occur at this site. In addition, regions of the genome predicted to have significantly more open structure at the RNA level correlate closely with hypervariable sites found in these viral genomes. The possible importance of local secondary structure to the biological function of the human immunodeficiency virus genome is discussed.  相似文献   

13.
DNA topoisomerases II are nuclear enzymes that have been identified recently as targets for some of the most active anticancer drugs. Antitumor topoisomerase II inhibitors such as teniposide (VM-26) produce enzyme-induced DNA cleavage and inhibition of enzyme activity. By adding to such reactions distamycin, a compound whose effects on DNA have been extensively characterized, we investigated the effects of drug binding upon topoisomerase II-mediated DNA cleavage induced by VM-26. We have found a correspondence between distamycin binding (determined by footprinting analysis) and topoisomerase II-mediated cleavage of SV40 DNA (determined by sequencing gel analysis). Distamycin binding potentiated the cleavage of specific sites in the near proximity of distamycin-binding sites (within at least 25 base pairs), which indicates that DNA secondary structure is involved in topoisomerase II-DNA interactions. That distamycin potentiated cleavage only at sites that were recognized in the absence of distamycin and suppressed cleavage directly at distamycin-binding sites indicates that topoisomerase II recognizes DNA on the basis of primary sequence. In addition, distamycin stimulated topoisomerase II-mediated DNA relaxation and antagonized the inhibitory effect of VM-26. These results show that the DNA sequence-specific binding of distamycin produces local and propagated effects in the DNA which markedly affect topoisomerase II activity.  相似文献   

14.
Intrinsically disordered proteins (IDPs)/protein regions (IDPRs) lack unique three-dimensional structure at the level of secondary and/or tertiary structure and are represented as an ensemble of interchanging conformations. To investigate the role of presence/absence of secondary structures in promoting intrinsic disorder in proteins, a comparative sequence analysis of IDPs, IDPRs and proteins with minimal secondary structures (less than 5%) is required. A sequence analysis reveals proteins with minimal secondary structure content have high mean net positive charge, low mean net hydrophobicity and low sequence complexity. Interestingly, analysis of the relative local electrostatic interactions reveal that an increase in the relative repulsive interactions between amino acids separated by three or four residues lead to either loss of secondary structure or intrinsic disorder. IDPRs show increase in both local negative-negative and positive-positive repulsive interactions. While IDPs show a marked increase in the local negative-negative interactions, proteins with minimal secondary structure depict an increase in the local positive-positive interactions. IDPs and IDPRs are enriched in D, E and Q residues, while proteins with minimal secondary structure are depleted of these residues. Proteins with minimal secondary structures have higher content of G and C, while IDPs and IDPRs are depleted of these residues. These results confirm that proteins with minimal secondary structure have a distinctly different propensity for charge, hydrophobicity, specific amino acids and local electrostatic interactions as compared to IDPs/IDPRs. Thus we conclude that lack of secondary structure may be a necessary but not a sufficient condition for intrinsic disorder in proteins.  相似文献   

15.
Covalently linked pairs of well-chosen peptides can be good model systems for protein folding studies because they can adopt stable secondary, side-chain, and tertiary structure under certain conditions. We demonstrate a method for characterizing the structure in such peptide pairs by hydrogen/deuterium exchange of individual amide groups analyzed by collision-induced dissociation tandem mass spectrometry, in concert with circular dichroism spectroscopy. We apply the method to two peptides (and their three possible pairs) from bovine pancreatic trypsin inhibitor to address specific hypotheses regarding the stabilization of local secondary structure by long-range interactions.  相似文献   

16.
K H Johnson  D M Gray 《Biopolymers》1991,31(4):385-395
We analyzed the CD and uv absorption spectra of 5S RNA from Escherichia coli using the method developed in the preceding paper. The analysis of spectra of 5S RNA at 20 degrees C in 0.1M NaClO4, 2.5 mM Na+ (phosphate), pH 7.0, and 0.5 mM MgSO4 gave 7 +/- 3.6 A.U base pairs, 25 +/- 3.6 G.C base pairs, and 7.5 +/- 3.6 G.U base pairs. Estimates of nearest neighbor base pairs were more consistent with the Pieler-Erdmann and the Gewirth-Moore secondary structure models than with the Fox-Woese or the Burns-Luoma-Marshall models. We also examined the structure of 5S RNA as a function of temperature. The melting profile exhibited two transitions--one at about 35 degrees C and one above 50 degrees C. Our spectral data showed that helices I and II were stable during the first transition, and agreed with other data that helix III was the most likely helix to have melted. The results from this in-depth study of 5S RNA indicate that our method of analysis should be useful for studying the secondary structures of other small, unmodified RNAs.  相似文献   

17.
We report the effect of partial delipidation and monomerization on the protein conformational changes of bacteriorhodopsin (bR) as a function of temperature. Removal of up to 75% of the lipids is known to have the lattice structure of the purple membrane, albeit as a smaller unit cell, whereas treatment by Triton monomerizes bR into micelles. The effects of these modifications on the protein secondary structure is analyzed by monitoring the protein amide I and amide II bands in the Fourier transform-infrared (FT-IR) spectra. It is found that removal of the first 75% of the lipids has only a slight effect on the secondary structure at physiological temperature, whereas monomerizing bR into micelles alters the secondary structure considerably. Upon heating, the bR monomer is found to have a very low thermal stability compared with the native bR with its melting point reduced from 97 to 65 degrees C, and the pre-melting transition in which the protein changes conformation in native bR at 80 degrees C could not be observed. Also, the N[bond]H to N[bond]D exchange of the amide II band is effectively complete at room temperature, suggesting that there are no hydrophobic regions that are protected from the aqueous medium, possibly explaining the low thermal stability of the monomer. On the other hand, 75% delipidated bR has its melting temperature close to that of the native bR and does have a pre-melting transition, although the pre-melting transition occurs at significantly higher temperature than that of the native bR (91 degrees C compared with 80 degrees C) and is still reversible. Furthermore, we have also observed that the reversibility of this pre-melting transition of both native and partially delipidated bR is time-dependent and becomes irreversible upon holding at 91 degrees C between 10 and 30 min. These results are discussed in terms of the lipid and lattice contribution to the protein thermal stability of native bR.  相似文献   

18.
We explore the question of whether local effects (originating from the amino acids intrinsic secondary structure propensities) or nonlocal effects (reflecting the sequence of amino acids as a whole) play a larger role in determining the fold of globular proteins. Earlier circular dichroism studies have shown that the pattern of polar, non polar amino acids (nonlocal effect) dominates over the amino acid intrinsic propensity (local effect) in determining the secondary structure of oligomeric peptides. In this article, we present a coarse grained computational model that allows us to quantitatively estimate the role of local and nonlocal factors in determining both the secondary and tertiary structure of small, globular proteins. The amino acid intrinsic secondary structure propensity is modeled by a dihedral potential term. This dihedral potential is parametrized to match with experimental measurements of secondary structure propensity. Similarly, the magnitude of the attraction between hydrophobic residues is parametrized to match the experimental transfer free energies of hydrophobic amino acids. Under these parametrization conditions, we systematically explore the degree of frustration a given polar, non polar pattern can tolerate when the secondary structure intrinsic propensities are in opposition to it. When the parameters are in the biophysically relevant range, we observe that the fold of small, globular proteins is determined by the pattern of polar, non polar amino acids regardless of their instrinsic secondary structure propensities. Our simulations shed new light on previous observations that tertiary interactions are more influential in determining protein structure than secondary structure propensity. The fact that this can be inferred using a simple polymer model that lacks most of the biochemical details points to the fundamental importance of binary patterning in governing folding.  相似文献   

19.
20.
Many different programs have been developed for the prediction of the secondary structure of an RNA sequence. Some of these programs generate an ensemble of structures, all of which have free energy close to that of the optimal structure, making it important to be able to quantify how similar these different structures are. To deal with this problem, we define a new class of metrics, the mountain metrics, on the set of RNA secondary structures of a fixed length. We compare properties of these metrics with other well known metrics on RNA secondary structures. We also study some global and local properties of these metrics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号